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1 Background

The dynamics of chemical kinetic systems exhibit a wide range of time scales. Computational Singular Perturba-
tion (CSP) [1, 2] analysis facilitates the study of large andcomplicated reacting flow systems by decomposing
the system dynamics into fast and slow dynamics. The key advantage of CSP-based reduction strategies is the
ability to carry out the fast/slow decomposition automatically allowing for the replacement of a stiff system of
large dimension with one which is non-stiff with a a reduced number of state variables. The numerical integration
of the reduced, non-stiff model can be carried out by resorting to an explicit time-scale split integration algo-
rithm [3]. However, a straightforward implementation of CSP is not affordable when dealing with systems of
large dimension because of the high computational cost associated with the CSP analysis. One way to reduce this
cost is to implement a tabulation strategy to store and reusethe manifold information generated by CSP.

Our tabulation borrows from the ”Piecewise Reusable Implementation of Solution Mapping” (PRISM) [4]
technique the utilization of hypercubes in the Chemical Configuration Space (CCS) and the polynomial regression
of response surfaces, and adapts them to address the specificchallenges of CSP, while exploiting the reduction of
dimensionality offered by CSP. In contrast to conventionalPRISM implementations, where the solution is mapped
against the full state vector, we seek to store and reuse information of a lower, if existing,(N −M)-dimensional
surface within theN-dimensional hypercube. Here,N is the number of unknowns in the state vectory andM is the
number of fast time scales that, at some point in the CCS, are found “exhausted”, and therefore not contributing
to the (slow) dynamics of the system. Specifically, we tabulate the CSP basis vectors/covectorsa andb. This
choice is based on the fact that the eigenvalue analysis of the Jacobian of the source term and the refinements
needed for the associated computations are expensive. Moreover, the CSP vectors/covectors are at the core of the
computation of important quantities such as the projectionmatrix Qs = I −∑r=1,M arbr or the radical correction
in the CSP integrator [3]. The implementation of the tabulation consists of building local –low-order– polynomial
response surfaces of the elements of the firstM columns ofa and rows ofb as a function of theN −M active
species.

The effectiveness and feasibility of the approach relies ultimately on the ability to identify the valueM and
theN−M variables in order to characterize accurately the Slow Invariant Manifold (SIM) when the table is being
constructed. and to allow for an accurate simulation of the system dynamics during integration

In this paper we show how the concept of the CSP homogeneous (radical) correction [5, 6] can be used to
project any state vector picked at random in anN-dimensional hypercube onto a neighborhood of an(N −M)-
dimensional SIM. The action of the homogeneous correction is to reduce, at each application, the amplitudes of
theM fastest modes, thus monitoring the approach of the state vector to the SIM. We will adopt the definition of
homogeneous (radical) correction used in [3], that is:
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δy = −
M

∑
m,n=1

amτm
n f n (1)

whereδy is the displacement of the state vector in the fast subspace produced by non-vanished fast mode ampli-
tudes{ f n = bn ·g}M

n=1, with g denoting the right hand side (RHS) of the kinetic model.
During the tabulation stage, this property is used to computeM inside the hypercube when this is sufficiently

small such that any point is ”close” to the manifold, and is attracted to it along the fast directions. The selection
of the proper size of the hypercube is carried out adaptivelyduring the table construction, although this issue is
not discussed in this paper. By projecting the state vector onto the SIM during the integration stage, important
computational savings can be achieved since the exhausted fast scales are eliminated and the number of time steps
needed to accurately integrate the slow dynamics of the original system of differential equations is significantly
smaller.

2 CSP “homogeneous correction”

Typically, a state vectory landing in a hypercube where a SIM of unknown dimension(N −M) exists, is found
sufficiently off the SIM, this causing theM fastest time scales to be active and forcing the state vectorto move
towards the SIM. One way to identify the SIM dimension withina hypercube is to compute trajectories starting
from different points in the hypercube and to monitor how many fast amplitudes are vanished when the trajectories
leave the hypercube. However, computing the trajectories soon becomes prohibitively expensive.

Alternatively, one could imagine projecting the state vector onto a SIM of presumed dimensionM by resorting
to the homogeneous correction, Eq.(1), which allows skipping the computation of the fast dynamics. As the SIM
dimension within a hypercube, we can take the largest value of M for which the projected state vector lands inside
the same hypercube.

A repeated application of the homogeneous correction, for an assumed value ofM, can bring the state vector
arbitrarily close to the nearest (N−M)-D SIM. The homogeneous correction mostly affects the variables identified
as CSP radicals, whereas the non-CSP radical (major species) are relatively unaffected. The ratios{dyi/yi}

N
i=1

monitor the relative changes of each solution component after each correction, which can be used as a stopping
criterion for the homogeneous correction iterates.

Clearly, the projected state vector on the SIM is not the sameas the point that the integration trajectory would
reach, starting from the same initial conditions. This onlyoccurs if the ratioτ f ast/τslow = 0, otherwise the two
points differ by an amount which is a function of the time,∆t, elapsed to reach the SIM from the starting point.
In the next section, we show with an example that this difference can be made arbitrarily small without affecting
significantly the accuracy of the integration of the slow dynamics, while the computation of the large number of
very small integration time steps required to describe the fast approach to the SIM is avoided.

3 Example: a 3 species kinetics problem

To illustrate the application of the homogeneous correction, we consider the 3-species kinetics problem analyzed
in [2]. The right hand side of this model problem reads:
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The solution trajectories are asymptotically attracted towards a 1-D SIM, a line in a 3-D phase space.

21st ICDERS - July 23-27, 2007 - Poitiers 2



J. Ortega Slow manifold identification for tabulation based adaptivechemistry

M = 1 y1 y2 y3 dy1/y1 dy2/y2 dy3/y3 f 1

Initial 0.97003 0.92696 0.99514 -128.35270
1 hc 0.94726 0.97593 0.99401 0.02346 -0.05283 0.00113 2.41797
2 hc 0.94768 0.97504 0.99403 -0.00044 0.00091 -0.00002 0.00454

M = 2 y1 y2 y3 dy1/y1 dy2/y2 dy3/y3 f 1 f 2

Initial 0.97003 0.92696 0.99514 -128.35269 -11.47343
1 hc 0.97782 0.99093 0.96854 -0.00804 -0.06901 0.02673 4.59536-0.06144
2 hc 0.97876 0.98934 0.96844 -0.00096 0.00160 0.00010 0.00275 -0.00033

Table 1: Computed values of the state vector with relative changes, and modal amplitudes before and after apply-
ing the homogeneous correction (hc).

Consider the hypercube defined by the vertex[y1,y2,y3] = [0.875,0.875,0.875]and edge lengths[δy1,δy2,δy3] =
[0.125,0.125,0.125], plotted in Fig. 1. Small black dots represent values of the state vector selected randomly
within the limits of the hypercube. For all these “experimental design” points we computed two successive ho-
mogeneous corrections for bothM = 1 andM = 2. The homogeneous correction in Eq.(1) is calculated using
the eigenvectors of the Jacobian of the RHS as CSP vectors. Table 1 shows the state vector after one and two
corrections for the same initial point, the relative changeof each component of the state vector, and the magnitude
of the fast modal amplitudes.

We can observe that, when the homogeneous correction is calculated withM = 1, the initial points are taken
within the vicinity of a 2D surface (red points in Fig. 1). This surface is a 2-D SIM where the first modal amplitude
f 1 ≈ 0. Similarly, whenM = 2 the corrections take the experimental design points to thevicinity of a 1-D SIM,
the intersection of two surfaces at which( f 1 ≈ 0∩ f 2 ≈ 0) (green points in Fig. 1). The trajectory found by
prescribing constant time intervals for the initial point in Tab. 1 shows the behavior of the state vector under the
influence of fast scales, described in the previous section and in [2]. The blue circles in Fig. 1 represent the final
values of the state vector after the corrections computed with M = 1 andM = 2.

The relative changes between initial and final points of the second correction are significantly smaller than
those due to the first correction, indicating convergence towards the SIM as also confirmed by the vanishing
values of the fast modal amplitudes in Tab. 1. ForM = 1, the homogeneous correction affects the elementsy1

andy2 to a greater extent thany3. Thereforey3 can be labeled as a major species and bothy1 andy2 as CSP
radicals. The pointers fory1 andy2 areO(0.2) andO(0.8) respectively, whereas the CSP pointer fory3 is three
orders of magnitude smaller. ForM = 2 the homogeneous correction affects the 3 species to the same degree.
TheN diagonal elements of the fast subspace projection matrixQm are of the same order of magnitude,O(0.35),
O(0.45) andO(0.20) for y1, y2 andy3 respectively.

Figure 2 shows the evolution vs time of the 3 species using theCSP integrator [3] and fourth order Runge-Kutta
(black line). We compare these results with those obtained after 1 (red) and 2 (green) homogeneous corrections
calculated withM = 2 (shown in Tab. 1) followed by the same CSP integration. We can observe the high accuracy
of the integration after the short initial periods. The number of integration steps with CSP starting from the initial
point until log10(time) = −0.75 is 170. After one homogeneous correction, most of the short integration steps of
the rapid transit period are skipped and the number of steps drops to 65. Finally, with 2 consecutive homogeneous
corrections, the modal amplitudes become negligible indicating close proximity to the 1D manifold. Under these
conditions CSP is especially effective filtering out the fast scales and only 1 time step is needed to integrate the
system of ODE’s with comparable accuracy.

4 Conclusions

The CSP homogeneous correction provides an efficient way to identify an accurate projection on a SIM of any
state vector close to but off the SIM. This property can be used to identify and characterize the SIM dimension
without resorting to expensive trajectory calculations. An effective dimensionality reduction is obtained as the

21st ICDERS - July 23-27, 2007 - Poitiers 3



J. Ortega Slow manifold identification for tabulation based adaptivechemistry

Figure 1: Black points are random design points
in a hypercube defined by the vertex[y1,y2,y3] =
[0.875,0.875,0.875] and edge lengths[δy1,δy2,δy3] =
[0.125,0.125,0.125]; red points calculated withM = 1;
green points calculated withM = 2.
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Figure 2: Time integration with CSP (black line) for
an initial pointy = [0.97003,0.92696,0.99514]. Red
points correspond to the results of the integration after
1 homogeneous correction withM = 2 followed by
CSP integration of the full system. Green points are
the results after 2 homogeneous corrections.

CSP information can be computed as a function of just theN −M major species. Significant CPU savings can
be achieved by skipping the detailed calculation of the fastapproach to the SIM at the cost of a minimal loss of
accuracy.
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