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1 Background

The dynamics of chemical kinetic systems exhibit a wide eamiggime scales. Computational Singular Perturba-
tion (CSP) [1, 2] analysis facilitates the study of large andhplicated reacting flow systems by decomposing
the system dynamics into fast and slow dynamics. The keyradga of CSP-based reduction strategies is the
ability to carry out the fast/slow decomposition automalticallowing for the replacement of a stiff system of
large dimension with one which is non-stiff with a a reducedber of state variables. The numerical integration
of the reduced, non-stiff model can be carried out by resgrto an explicit time-scale split integration algo-
rithm [3]. However, a straightforward implementation of E® not affordable when dealing with systems of
large dimension because of the high computational costeded with the CSP analysis. One way to reduce this
cost is to implement a tabulation strategy to store and rthesenanifold information generated by CSP.

Our tabulation borrows from the "Piecewise Reusable Imgletation of Solution Mapping” (PRISM) [4]
technigue the utilization of hypercubes in the Chemicalfi@amation Space (CCS) and the polynomial regression
of response surfaces, and adapts them to address the spbalfanges of CSP, while exploiting the reduction of
dimensionality offered by CSP. In contrast to conventi®tRISM implementations, where the solution is mapped
against the full state vector, we seek to store and reusenigfiion of a lower, if existing(N — M)-dimensional
surface within theN-dimensional hypercube. Held,is the number of unknowns in the state vegtandM is the
number of fast time scales that, at some point in the CCS canedf “exhausted”, and therefore not contributing
to the (slow) dynamics of the system. Specifically, we taieuthe CSP basis vectors/covectarandb. This
choice is based on the fact that the eigenvalue analysiseadahobian of the source term and the refinements
needed for the associated computations are expensive ovMaEréhe CSP vectors/covectors are at the core of the
computation of important quantities such as the projeatiatrix Qs = | — 3,_; yy &b" or the radical correction
in the CSP integrator [3]. The implementation of the talbiatatonsists of building local —low-order— polynomial
response surfaces of the elements of the fitstolumns ofa and rows ofb as a function of thé\ — M active
species.

The effectiveness and feasibility of the approach reli¢isnaltely on the ability to identify the valu®l and
theN — M variables in order to characterize accurately the Slowriawd Manifold (SIM) when the table is being
constructed. and to allow for an accurate simulation of freesn dynamics during integration

In this paper we show how the concept of the CSP homogeneadisdl) correction [5, 6] can be used to
project any state vector picked at random inNutdimensional hypercube onto a neighborhood of - M)-
dimensional SIM. The action of the homogeneous correcidn reduce, at each application, the amplitudes of
theM fastest modes, thus monitoring the approach of the staterecthe SIM. We will adopt the definition of
homogeneous (radical) correction used in [3], that is:
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wheredy is the displacement of the state vector in the fast subspackiped by non-vanished fast mode ampli-
tudes{ f" =b"-g}M ,, with g denoting the right hand side (RHS) of the kinetic model.

During the tabulation stage, this property is used to compuinside the hypercube when this is sufficiently
small such that any point is "close” to the manifold, and isaated to it along the fast directions. The selection
of the proper size of the hypercube is carried out adaptigdalyng the table construction, although this issue is
not discussed in this paper. By projecting the state veattw the SIM during the integration stage, important
computational savings can be achieved since the exhaastesthles are eliminated and the number of time steps
needed to accurately integrate the slow dynamics of thenaligystem of differential equations is significantly
smaller.

2 CSP “homogeneous correction”

Typically, a state vectoy landing in a hypercube where a SIM of unknown dimengiin- M) exists, is found
sufficiently off the SIM, this causing thigl fastest time scales to be active and forcing the state veztoove
towards the SIM. One way to identify the SIM dimension withitnypercube is to compute trajectories starting
from different points in the hypercube and to monitor how meast amplitudes are vanished when the trajectories
leave the hypercube. However, computing the trajectones §ecomes prohibitively expensive.

Alternatively, one could imagine projecting the state vecinto a SIM of presumed dimensibhby resorting
to the homogeneous correction, Eq.(1), which allows skigpihe computation of the fast dynamics. As the SIM
dimension within a hypercube, we can take the largest veliv for which the projected state vector lands inside
the same hypercube.

A repeated application of the homogeneous correction,Hassumed value &fl, can bring the state vector
arbitrarily close to the nearefi- M)-D SIM. The homogeneous correction mostly affects thealdeis identified
as CSP radicals, whereas the non-CSP radical (major speceeselatively unaffected. The rati({siyi/yi}iN:l
monitor the relative changes of each solution componeat afich correction, which can be used as a stopping
criterion for the homogeneous correction iterates.

Clearly, the projected state vector on the SIM is not the sasrtbe point that the integration trajectory would
reach, starting from the same initial conditions. This ootgurs if the ratiotfas /Tgow = 0, Otherwise the two
points differ by an amount which is a function of the tindg, elapsed to reach the SIM from the starting point.
In the next section, we show with an example that this diffeeecan be made arbitrarily small without affecting
significantly the accuracy of the integration of the slow dgrics, while the computation of the large number of
very small integration time steps required to describe #s¢ &pproach to the SIM is avoided.

3 Example: a 3 species kinetics problem

To illustrate the application of the homogeneous corregtice consider the 3-species kinetics problem analyzed
in [2]. The right hand side of this model problem reads:
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The solution trajectories are asymptotically attractedaals a 1-D SIM, a line in a 3-D phase space.
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M=1 Y1 Y2 Y3 dy1/y1 dy2/y2  dys/ys fl

Initial | 0.97003 0.92696 0.99514 -128.35270
lhc | 0.94726 0.97593 0.99401 0.02346 -0.05283 0.00113 2.41797
2hc | 0.94768 0.97504 0.99403 -0.00044 0.00091 -0.00002 0.00454

M=2 V1 Y2 Y3 dy1/y1 dyo/y>  dys/y3 fl f2
Initial | 0.97003 0.92696 0.99514 -128.35269 -11.47343
lhc | 0.97782 0.99093 0.96854 -0.00804 -0.06901 0.02673 4,595360.06144
2hc | 0.97876 0.98934 0.96844 -0.00096 0.00160 0.00010 0.002750.00033

Table 1: Computed values of the state vector with relatianges, and modal amplitudes before and after apply-
ing the homogeneous correction (hc).

Consider the hypercube defined by the vefyexy, y3] = [0.875 0.875 0.875 and edge lengthys, dy2, dys] =
[0.1250.1250.125, plotted in Fig. 1. Small black dots represent values of tagesvector selected randomly
within the limits of the hypercube. For all these “experirta@mesign” points we computed two successive ho-
mogeneous corrections for bolh = 1 andM = 2. The homogeneous correction in Eq.(1) is calculated using
the eigenvectors of the Jacobian of the RHS as CSP vectobde Thshows the state vector after one and two
corrections for the same initial point, the relative chanfjeach component of the state vector, and the magnitude
of the fast modal amplitudes.

We can observe that, when the homogeneous correction islatdd withM = 1, the initial points are taken
within the vicinity of a 2D surface (red points in Fig. 1). Bheurface is a 2-D SIM where the first modal amplitude
f1 ~ 0. Similarly, whenM = 2 the corrections take the experimental design points twittieity of a 1-D SIM,
the intersection of two surfaces at whi¢h! ~ 0N f2 ~ 0) (green points in Fig. 1). The trajectory found by
prescribing constant time intervals for the initial pointiab. 1 shows the behavior of the state vector under the
influence of fast scales, described in the previous sectidrira [2]. The blue circles in Fig. 1 represent the final
values of the state vector after the corrections computédMi= 1 andM = 2.

The relative changes between initial and final points of #moad correction are significantly smaller than
those due to the first correction, indicating convergeneeatds the SIM as also confirmed by the vanishing
values of the fast modal amplitudes in Tab. 1. Fbe 1, the homogeneous correction affects the elemgnts
andy, to a greater extent thays. Thereforeys can be labeled as a major species and lyptandy, as CSP
radicals. The pointers for, andy, areO(0.2) andO(0.8) respectively, whereas the CSP pointerygiis three
orders of magnitude smaller. F&t = 2 the homogeneous correction affects the 3 species to the dagree.
TheN diagonal elements of the fast subspace projection m&iare of the same order of magnitud(0.35),
0(0.45) and0O(0.20) for y1, y» andys respectively.

Figure 2 shows the evolution vs time of the 3 species using 8 integrator [3] and fourth order Runge-Kutta
(black line). We compare these results with those obtaiffited & (red) and 2 (green) homogeneous corrections
calculated wittM = 2 (shown in Tab. 1) followed by the same CSP integration. Weoteserve the high accuracy
of the integration after the short initial periods. The nwenbf integration steps with CSP starting from the initial
point until logo(time) = —0.75 is 170. After one homogeneous correction, most of thetshimgration steps of
the rapid transit period are skipped and the number of stagssdo 65. Finally, with 2 consecutive homogeneous
corrections, the modal amplitudes become negligible aitig close proximity to the 1D manifold. Under these
conditions CSP is especially effective filtering out thet fesales and only 1 time step is needed to integrate the
system of ODE'’s with comparable accuracy.

4 Conclusions
The CSP homogeneous correction provides an efficient wagetatify an accurate projection on a SIM of any

state vector close to but off the SIM. This property can belusddentify and characterize the SIM dimension
without resorting to expensive trajectory calculations éffective dimensionality reduction is obtained as the
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Figure 1. Black points are random design pointsigure 2: Time integration with CSP (black line) for

in a hypercube defined by the vertdys,y2,ys] = an initial pointy = [0.970030.926960.99514. Red

[0.8750.875,0.875 and edge length®y1,dy>,dy3] = points correspond to the results of the integration after

[0.125/0.125,0.125; red points calculated witM = 1; 1 homogeneous correction witl = 2 followed by

green points calculated witd = 2. CSP integration of the full system. Green points are
the results after 2 homogeneous corrections.

CSP information can be computed as a function of justNheM major species. Significant CPU savings can
be achieved by skipping the detailed calculation of the dagtroach to the SIM at the cost of a minimal loss of
accuracy.
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