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1 Introduction

Turbulent premixed combustion remains a challenging topic due the interaction of many different time
and length scales. All these length scales are often not representable on a discrete numerical grid. There-
fore, the reactive Navier Stokes equations are filtered, dividing the solutions into resolved (macroscopic)
parts and unresolved (microscopic) parts, where the latter need closure. In this paper we focus on two
key points of the multiple scale problem, namely (i) the consistent coupling of large and small scale state
and (ii) the subtile interaction of numerics and the model for the unresolved scales. In the next section
we present a strategy that couples the reactive macro and micro physics in an adaptive way. In section
three we propose a turbulent subgrid closure, that seems to be less sensitive to the numerical scheme and
the discrete grid than standard applied models. The reason for this is the explicit closure dependency
from the large scale information instead of the small scale solution, which is influenced by numerics. In
section four an examplary result ist shown.

2 The Modular Flame Tracking Concept

The deflagration capturing/tracking hybrid scheme of Smiljanovski et al. [6] allows a robust represen-
tation of turbulent high speed combustion. A deflagration is considered as a reactive discontinuity,
which is embedded in a compressible surrounding flow. The flame surface is represented as the level
set of a dynamically evolving scalar function. Flame flow coupling is realized by explicitly invoking
Rankine-Hugoniot type jump conditions at the front. While the original scheme uses the standard
Rankine-Hugoniot conditions and an explicit burning rate law expressing the net unburnt gas mass
consumption as a function of the unburnt gas conditions, Schmidt and Klein [4] extend the idea to prop-
agating flame structures which are attached in normal direction to the large scale front. The modular
algorithmic structure allows the incorporation of a variety of internal flame structure descriptions. This
ultimately enables one to capture turbulent combustion processes within any of the regimes in the Borghi
diagram. In this paper we want to extend the modular idea to an ”adaptivity in complexity”.

Not only in the level set concept, the turbulent burning velocity, st, is a key parameter that summa-
rizes the net effects of unresolved turbulence chemistry interactions. In principle, there are two different
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Figure 1: Flame attached to a flame holder: In highly unsteady regions a detailed flame structure
computation, yielding the turbulent burning speed, is performed (lower right structure computed with
LEM); if a parallel running parameterization yields comparable results, we switch off the costly online
computation (upper left calculation, performed with LEM, switches to parameterization from eq. (1))

ways to get it, (i) by supplying a burning rate law that parameterizes st by resolved motions, or (ii)
a lower order online calculation of the chemistry turbulence interaction in the turbulent flame brush.
What is used during a calculation should in principle be the best possible compromise between numerical
cheapness and physical sounding. The hierarchy of model complexity we use starts with a parameteri-
zation of st using the idea of [1]. Next level of complexity is GLEM [3] with prescribed laminar burning
speed, going up till a LEM or ODT [2] simulation using a reduced tabulation technique [5]. This is
a sample choice that might be exchanged in a modular fashion. The hierarchy can be interpreted as
several levels of complexity, that are coupled to the overall capturing/tracking scheme in an adaptive
fashion. The final goal is an algorithm that in the initial stages of a computation locally runs all the
different modules. When a lower order module yields comparable results (to a defined error margin), one
switches off the more expensive ones. In the end, only in flow regions where the turbulence/chemistry
interaction appears to be not describable with a relatively simple parameterizations, the more expensive
superparameterizations yield st and additional quantities. Depending on the setup the unexpensive pa-
rameterization is used in the major part of the grid. The used parameterized for st, that has originally
been derived for the flame surface density concept, reads

ŝt = s0
l

(
1 + min

[
∆
δ0
l

,Γ
u′∆
s0

l

])β

. (1)

Laminar flame thickness δ0
l and laminar flame speed s0

l are calculated a priori for a given premixed
system. The velocity fluctuation u′∆ at the filter scale ∆ is locally given by the scaling function described
in the next section. Expression for the parameter β and the more complex function Γ are taken from
[1]. A sketch of the adaptive idea is given in Figure 1.

3 The Two Scale Model

Filter Scale: The present developments are based on the reactive Euler equations in conservation
form. Here the following notation is used: ρ is the density, v the flow velocity, p the pressure, Q the
specific heat release, E the sum of internal and kinetic energy and γ the isentropic coefficient. To make
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a difference between integral and filter scale terms, we mark the latter by a hat and the first by an
over-bar. With these conventions the governing equations read

∂

∂t
ρ̂ +∇ · (ρ̂v̂) = 0

∂

∂t
(ρ̂v̂) +∇ · (ρ̂v̂ ◦ v̂ + Ip̂) = f(ρ̂, v̂, ν̂t)

∂

∂t
(ρ̂Ê) +∇ ·

(
[ρ̂Ê + p̂]v̂

)
= f(ρ̂, v̂, Ê, p̂, ν̂t) (2)

with the equation of State

ρ̂Ê =
p̂

γ − 1
+

1
2
ρ̂v̂ · v̂ + ρ̂

Nspec∑
i=1

QiŶi. (3)

The terms on the rhs, written in compact form as f(·), are source terms due to closure of chemistry
and turbulence. The turbulent kinematic viscosity ν̂t stands symbolically for a gradient diffusion type
closure. Balance laws for the species mass fractions Yi are added in a standard way.

The flame surface on the filter level is calculated as the level set G = 0 of a scalar function, G(~x, t).

Ĝt + (v̂ + ŝtn̂) · ∇G = 0. (4)
Flame-flow coupling is achieved analogously to ideas of Smiljanovski et al. [6] and Schmidt and Klein [4].
Integral Scale: The unresolved terms of equation system (2), which is solved on a filter scale ∆,
still need closure. Therefore, we modify a former two scale ansatz proposed by Willems and Peters [7].
They propose a closure that is motivated by Kolmogorov’s theory of turbulence. We follow their way,
but propose a formulation that removes some inconsistencies of the original formulation, while having
the side benefit of being in principle independent of the numerical scheme. The key issue is to solve
an additional model for the integral length and time scales, yielding the same solution when the grid
is refined below the integral scale of turbulence. In the present development we chose for simplicity a
standard k − ε-model for the integral scale lt

∂

∂t
(ρk) +∇ ·

(
ρkv

)
= f(ρ,v, νt)

∂

∂t
(ρε) +∇ · (ρεv) = f(ρ, νt). (5)

Here, k is the turbulent kinetic energy and ε is its dissipation. Since integral scales frequently are non
isotropic, a more physical model would be of anisotropic nature. Extending the algorithm in such a way
is work in progress. Since equations (5) are not grid dependent they are solved on the filter level. This
increases the costs of the algorithm, but makes it much more easy to handle.
Two Scale Coupling: Thinking of the Kolmogorov picture of cascading energy from integral scales
down to small scales, we close the unresolved motion (kin. viscosity ν̂t) by a scaling function f(∆, lt)

ν̂t = cν
k
2

ε · (1− f(∆, lt))2 with f(∆, lt) =
{

1− (∆
lt

)2/3 for ∆
lt
≤ 1

0 for ∆
lt

> 1

relating turbulent viscosities ν̂t to the integral scales [7]. Although the equation system for the filter
scale is in closed form, there are no relations for the integral density and velocity fields, ρ and v. We
get φ ∈ [ρ, v], e.g. by instantaneous diffusion of the filtered ρ̂ and v̂ field to the lt scale via integration
of ∂

∂t∗ φ̂ = k−k̂
ε ∇ ·

(
νt∇φ̂

)
over the pseudo time interval [0 <

t

(τ − τ∆)| {z }
t∗

< 1]. Other methods to couple the

two scales are under investigation.
To summarize, the advantage of our idea compared to standard subgrid closure models are, (i)

the computation of equations for integral scale turbulence quantities, that yield the same solution for
different (smaller and smaller) grid sizes, and (ii) the closure terms on the filter scale depend of the
converging large scale model and not of fine scale solutions, which are directly influenced by numerics!
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Figure 2: Unsteady flow over a backward facing step: plots of the integral length scale (left) and the
vorticity on the filter scale (right) for different filter sizes ∆x/n at a fixed time level, where ∆x is the
grid size of the coarsest grid. Grid is refined by a factor of two from top to bottom

4 Results

First we want to illustrate the underlying concept of the two scale model. Therefore we calculate a flow
over a step, that could also be seen as a characteristic burner outlet configuration. In Figure 2 results
for the integral length and the vorticity on the filter scale are plotted for sucessivly refined grids at a
fixed time. It becomes obvious that, as hoped, the solution on the integral scale converges. A scaling
function relates the grid converged integral solution to the filter scale closure, thus the chosen numerical
discretization does not directly influence the closure. Numerics only influence the lhs of (2), making it
possible to distinguish between modelling and numerical error. Several examples for reactive cases of
flame holder and swirl stabilized flames, as well as for the adaptivity concept are presented in the talk.
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