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1   Introduction  

Many chemically reactive systems are characterized by parametric sensitivity that results in the occurrence a 

wide variety of static and dynamic phenomena (Aris et al., 1991). Depending on the assumed operating 

conditions or on the values assumed by different parameters of the model which describes the physical and 

chemical properties of the system, static equilibrium as well as more complex time–asymptotic regimes such as 

periodic, quasi–periodic or chaotic oscillations can be observed. The dynamical analysis of distributed reactive 

systems described by PDE evolutionary equations often becomes very difficult because the order of the 

dynamical model required to properly describe the system is very high. This, coupled with obvious limitations of 

the software and hardware, leads to the need of expressing the original model as a set of ordinary differential 

equations of the lowest possible order. Among classical numerical approaches, finite difference methods are 

simple but require a relatively large number of ODE as compared for instance to orthogonal collocation. Other 

spectral methods have been used for reactive systems such as Galerkin projection. Projection methods provide an 

interesting framework in that by proper choice of the functional basis one can reduce the number of ODEs 

necessary to accurately describe the dynamics of the original PDE model. The Proper Orthogonal Decomposition 

(POD) approach delivers an optimal set of empirical basis functions from an ensemble of observations obtained 

either experimentally or from numerical simulation, which characterize the spatio–temporal complexity of the 

system. Obtained orthogonal functions can be afterwards used in a Galerkin projection of the original system and 

as a result a low–dimensional model can be developed (Lumley, 1967). Various strategies aiming at the 

determination of an optimal set of POD basis functions that are able to capture correctly the dynamics of the 

system can be found in literature. In fact, the reliability of the basis depends on the ensemble of observation, that 

is on the generation of this ensemble, namely, time of sampling, location and number or samples as well as 

varying system conditions such as variation of parameters or initial conditions occurred during sampling (Alonso 

et al, 2004). Moreover, a POD model is not generally valid far from the parameter range in which the snapshots 

were taken. On the other hand, Graham and Kevrekidis (1996) were able to determine a POD basis containing 

global information about the model by integrating from 1000 different initial conditions for one given value of 

the parameter, for which chaos was known to exist; the resulting dynamical model was reported to approximate 

well the solutions manifold. Zhang et al (2004) also obtained a POD dynamical model applicable to a wide range 

of conditions, by collecting data sets from simulations of the original system conducted for different initial 

conditions and for up to six different values of the bifurcation parameter. It should be noted that the number of 

basis functions chosen for the approximation is critical: Graham and Kevrekidis (1996) showed that an 

insufficient number of basis functions – in their case Chebyshev polynomials – can cause that significant 

phenomena such as period doubling are not detected. 

In this work, we apply POD/Galerkin to a model of pseudohomogeneous tubular reactor with mass recycle 

in oscillatory regime. We analyze the performance of the method by comparing solutions from the reduced 

model with a “reference” numerical solution.  

2   Mathematical model and numerical method 

As an example we consider a model of pseudohomogeneous tubular reactor with mass recycle (Berezowski et al, 

2000). The mathematical model is given by the following system of mass and heat balance equations: 
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with Danckwerts boundary conditions resulting from recycle, where α  is the conversion degree and θ  is the 

dimensionless temperature. In the present work the PDE model is first reduced to a system of ODE by 

approximating it with a cascade of 50 CSTR which is then employed to build reference solutions by time 

integration, to conduct bifurcation analysis, and finally to collect data needed for the generation of POD basis 

functions. In the POD scheme, the objective is to determine a set of orthogonal basis functions which minimize, 

on average, the least square error between the truncated representation of the model and the true solution. By 

collecting time series obtained by simulation, the sampled data set is a vector–valued function given as a matrix: 
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where N  is the number of positions in the spatial domain and M is the number of samples taken in time. A 

POD basis { }1 2
, , ,

N
ϕ ϕ ϕΦ = …  is obtained by solving the eigenvalue problem C λΦ = Φ  where 

( , ) ( ), ( )
t t

C x x U x U x′ ′=  is the averaged autocorrelation matrix and angular brackets denote time–averaging 

operation. Using the POD modes, the solution ( )
t

u x  can be expressed as  
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k
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where K N<  is the number of modes used for truncation, whereas ( )k
a t  are modal coefficients that can be 

calculated by Galerkin projection of the original PDE on the POD modes. The ordering of the eigenvalues from 

the largest to the smallest induces an ordering in the corresponding eigenfunctions, from the most to the least 

important. Hence, in order to determine the truncation degree of the POD reduced model, we define the 

cumulative correlation energy captured by the K successive modes which is given by: 

1 1

K N

K i i

k k

E λ λ
= =

=∑ ∑ . (5) 

Thus if the minimum required cumulative correlation energy is set, then the number of necessary modes is 

determined according to Eq. 5. 

3   Results 

Our goal is to evaluate the ability of POD/Galerkin to reproduce the dynamics of the system under study. To this 

aim, solutions obtained by POD/Galerkin are compared with those obtained with the CSTR cascade model.  

 

Table 1. Eigenvalues, % cumulative correlation energy, error from “reference” solution and Hausdorff 

distance between limit sets of CSTR and POD solutions. Values computed for conversion degree. 

Modes 1 3 5 10 13 19 23 36 49 

Eigenvalue 23.26 0.30 6.79e-2 6.31e-3 2.76e-3 4.81e-4 1.68e-4 7.70e-6 8.17e-15 

% Energy 95.39 98.93 99.57 99.92 99.97 99.99 100.00 100.00 100.00 

Error 2.56e-2 2.48e-2 2.58e-2 3.01e-2 2.91e-2 6.62e-3 4.93e-5 7.41e-6 5.77e-6 

dH(A,B) 8.76e-1 4.34e-1 3.83e-1 1.15e-1 7.25e-2 1.91e-2 6.92e-3 1.92e-3 1.90e-3 

 

First we must decide a criterion to decide how many modes are necessary for a satisfactory description. We 

evaluate the cumulative correlation energy as a function of the number of modes (Eq. 5). Then, the relative error 

between the POD solution and the CSTR “reference” solution defined as the mean square error of truncation 
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u u− ɶ , where ⋅ denotes Euclidean norm. Finally, we introduce the Hausdorff distance between sets defined 

as follows (Stuart and Humphries, 1998) { }( , ) max ( , ), ( , )
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one point from a set. Hence, we calculate the distance between two limit sets, namely the limit set obtained from 

CSTR simulation and its approximation by POD. The cumulative correlation energy proved insufficient to 

provide a criterion for selection of number of modes. The relative error provides a more direct evaluation of 

differences between the CSTR cascade solution and the reduced solution; however, even small frequency drifts 

can yield a large relative error for solutions which are essentially the same in the phase space, as reported in the 

example of Figure 1, which shows initial times (left) and steady states (right). 

 

Figure 1. Time series, POD/Galerkin w 23 basis functions (solid line) and CSTR cascade (dashed line). 

The same solution reported in Fig. 1 as a time series (POD with 23 basis functions) is seen in Fig. 2b in the phase 

space. The agreement with CSTR cascade (dashed line) is good, and almost no amplitude error is observed. On 

the contrary, Figure 2a reports the POD solution phase portrait for only 13 basis functions, where it is seen that 

there are unacceptable quantitative and qualitative discrepancies between the two solutions. 

     

Figure 2. Phase portraits of limit sets (a) 13 basis functions (b) 23 basis functions. 

 

Performance of POD reduced model was also evaluated with respect to qualitative dynamical features. Solution 

diagrams were obtained by parameter continuation of the CSTR approximation. Parameters of the model were 

kept constant as follows: 100
M H

Pe Pe= = ,  0.2f = ,  0.75β = , 5Le = ,  15γ = , 0δ = , whereas the value of 

Damköhler number Da was varied as the bifurcation parameter. As it is seen, for the assumed above set of 

parameters, multiple solutions exist i.e. one stable fixed point and stable and unstable oscillations. In Figure 3, 

the solution diagram computed for the system by brute force with POD/Galerkin using 19 modes is compared to 

the diagram obtained by automatic parameter continuation on the CSTR cascade model. POD basis functions 

were obtained by collecting snapshots from stable oscillations only in the range of Da in between the values 0.03 

to 0.08. It is seen that the results match in almost the whole range of stable limit cycles. The first bifurcation is 

also captured, whereas the supercritical Hopf bifurcation is not reproduced.  
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Figure 3. Solution diagram for conversion degree vs. Damköhler. Stable stationary solutions and stable 

oscillations (―); unstable oscillations (– –); unstable stationary solutions (…). Diamonds: POD/Galerkin. 

4   Conclusions 

In the attempt of building an accurate reduced dynamical of model of a pseudohomogeneous tubular reactor 

with mass recycle, a POD/Galerkin approach was developed and applied to simulations in the oscillatory 

regimes. Three different ways of comparing the solutions were employed to highlight features of the reduced 

model. It was found that the cumulative correlation energy is not a reliable criterion for such system. Since 

frequency drift can appear in the solution, also a conventional norm computed for the difference of time series is 

not a valid indication. The Hausdorff distance between limit sets is found to be the best means to assess accuracy 

of the reduced model although it does not carry information on time series. 
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