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1   Introduction 

 

   The thermal theory of premixed flame in homogeneous media [1] does not predict the existence of a fuel 

concentration limit at the absence of heat losses. Unlike earlier flame theories of Mallard and Le Châtelier, that 

postulated existence of a specific “ignition temperature” below which the reaction rate is negligible, premixed 

laminar flame models assume the combustion reaction is governed by Arrhenius kinetics at all temperatures. 

Accordingly, there is no specific fuel concentration at which a “cut-off” flame temperature can be defined, and 

thus a premixed flame can theoretically propagate at arbitrarily small fuel concentration, albeit at very low flame 

speed. 

   In contrast to homogeneous mixtures, the notion of an ignition temperature can be introduced for flames 

propagating through heterogeneous suspensions of non-volatile solid fuel particles in a gaseous oxidizer.  In this 

case, the critical temperature marks a rapid transition (bifurcation) in the particle reaction rate from low intensity 

reaction governed by Arrhenius kinetics to fast, high-temperature combustion governed by oxygen diffusion to 

the particle’s surface [2]. The particle ignition temperature in this case can be considered as a “cut-off” point 

below which the combustion rate is negligible. The fuel concentration limit for flame propagation BL, associated 

with this “cut-off” temperature can be found from a simple balance equation: ρc)TT/(QB iL 0−= , where Ti 

and T0 are ignition and initial temperatures of the mixture, c and ρ are the specific heat and density of the 
mixture of particles and gas and Q is the heat of combustion. In accordance to a simple thermal theory of the 

flame propagation in such suspensions [3], the flame speed at the limit is zero and increases with an increase in 

fuel concentration above the concentration limit Bl.  

   The thermal theory of flame propagation in particle suspensions mentioned above is based on a quasi-

homogeneous description of the suspension media when each point in the flame is assumed to contain a great 

enough concentration of particles so that they can be treated as a continuum. Such a description is justified when 

characteristic flame width (the thicknesses of the combustion and preheat zones) is much larger than the average 

distance between particles in the suspension. In the opposite case, which is often encountered in practical 

situations, the flame width is comparable to the distance between particles and treatment of the discrete nature of 

the particles is necessary. An analytic model of quasi-steady flame propagation in particulate suspension was 

developed by Goroshin et al. [3] that treats the particles as point-like sources of heat. The model predicts a much 

weaker dependence of the flame speed on the fuel concentration than the dependence of the continuum model in 

the vicinity of Bl, but the model exhibits the same “thermodynamic” flame propagation limit BL as the 

homogeneous approach. The present work analyzes the dynamics of the flame in the discrete heat source system 

by numerical simulations of the governing unsteady heat equation.  In particular, the flame propagation limit in 

the system is investigated in comparison to the thermodynamic limit predicted by the continuous and quasi-

steady solutions. 
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2   The model 

 

    The model of the discrete source system proposed by Goroshin et al. consists of point sources of heat (spatial 

delta functions) that, upon being activated, release heat that diffuses into the surrounding inert medium.  The 

heat release can be instantaneous or steady over a finite amount of time.  As the heat conducts to neighboring 

unburned particles and raises their temperature to ignition, the new sources are activated.  The moving boundary 

between unburned particles and particles that have been ignited can be considered a propagating flame front, as 

shown by figure 1. 
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Figure 1: Schematic representation of the discrete source system proposed by Goroshin et al. 

 

    In order to initiate a flame in the discrete source system, the domain of particles is divided into two regions:  a 

constrained region where the propagation of the flame is prescribed via a fixed sequence of ignition, and an 

unconstrained region where the flame propagates by first raising the temperature of a particle to its ignition 

temperature and then diffusing the heat of the reaction.  The ignition temperature used in the unconstrained 

region is defined by the temperature of the last particle in the constrained region at the moment it is activated.  

Thus, in a given simulation, a quasi-steady flame speed is assigned based on the specified ignition sequence and 

the ignition temperature.  This ignition temperature is then assigned to the remaining particles in the 

unconstrained region, and the wave of particle ignitions is allowed to continue to propagate on its own. 

    The system is further simplified to a one-dimensional flame traveling through regular spaced particles (or 

planes of energy release).  In the one-dimensional model, the absence of side boundary conditions implies a 

condition of no heat loss at the walls.  In fact, it can be shown that the one-dimensional model is equivalent to a 

two and three dimensions system with infinite size. 

    To compute the temperature field from a group of reacting particles with known ignition time tign,i and location 

xi, a function f(xi) is introduced to describe the spatial distribution of the activated source i, which equals 1 if a 

particle has reacted or 0 otherwise.  The temperature field is governed by the heat equation with a source term: 

( )i
c

f
t

BQ
T

t

T
c x+∇=
∂

∂ 2λρ          (1) 

where λ is the thermal conductivity of the inert gas, B is the mass concentration of the fuel, Q is the heat of 
reaction and tc is the reaction time of a particle.  The system is linear, so the solution to equation 1 can be 

obtained by the superposition of Green’s functions, each function Gi describing by itself the solution of the 

temperature field due a single reacting particle.  Assuming that a group A of particle has reacted, the temperature 

at location x and at time t, T(x,t) can be formally expressed as: 

( ) ( )∑
∈

=
Ai

i,ignii tt,Gt,T xxx          (2)   

    In the present study, the flammability limit is determined by solving the unsteady heat propagation and 

examining if the flame is able to continue to propagate through the unconstrained region.   
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3   Results 

 

    Results are presented in terms of dimensionless time τ=tα/l2 and temperature θ = cpρ(T-T0)/(BQ), where α is 
the thermal diffusivity and l is the characteristic distance between neighboring particles.  The dimensionless 

ignition temperature θign is defined when T=Tign.  The case where the θign=1 describes a mixture containing a fuel 
concentration equal to Bl, while the other limiting case of θign=0 represents the case of infinite heat release from 
the reaction.  Based on the normalization of time, the dimensionless combustion time is defined as χ= tcα/l

2
. 

    Flame propagation in the constrained region is prescribed by specifying δτ, the delay time between the 
ignition of two neighboring particles occurring up to some n

th
 particle.  Based on δτ, the ignition time tign,i 

(i=0,1,…,n) of all the particles in the constrained region can be determine from the particle location i by the 

linear relationship tign,i=iδτ.  Figure 2 presents the relationship between δτ and the temperature at the n
th
 particle 

θn at the time of ignition tign,n for various values of the combustion time χ. 
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Figure 2:  Dependence of the ignition temperature θn(tign,n) as a function of the delay time δτ between particles. 
 

     For a longer delay time between particles, the heat released from earlier particles can diffuse further and 

contribute to heating the next unreacted particle, permitting the flame to propagate with a larger ignition 

temperature.  Thus, as shown in figure 2, θn(tign,n) increases monotonically with the delay time δτ  for any value 
of χ and in the limit of dτ→∞, θn(tign,n)→1.  From here, θn(tign,n) is then assigned to the ignition temperature θign.  
By defining the flame speed η=1/δτ, this result implies that a combustion front could theoretically travel at zero 
flame speed for a mixture with a concentration equal to Bl or equivalently θign=1.  If the latter is true, the flame 
should, once initiated, be able to sustain propagate into the unconstrained region for any value of B > Bl.   

    When the transient heat equation is solve for the unconstrained region, the flame is able to continue 

propagating in the unconstraint system at the same speed that had been specified in the prescribed region for 

values of θign < 0.5.  Indeed, flame propagation in this region can be shown to reach the same steady-state 
average velocity as predicted by the analytic model of Goroshin et al., regardless of the means of initiation.  For 

example, rather than initiating the flame via the prescribed propagation in the constrained regime, the entire 

prescribed region can be activated simultaneously (constant volume explosion) and the heat diffusion into the 

unconstrained regime will initiate a flame that continues to propagate.  The flame will, after a transient period, 

reach the same terminal velocity. 

    For θign ≥ 0.5, initiation of the flame becomes more difficult in the simulations.  The significance of the θign = 
0.5 value is that, at this condition, a semi-infinite region that undergoes constant volume explosion is unable to 

raise the temperature of the other half of the domain to ignition.  In this case, the flame must be “overdriven” or 

initiated via a traveling wave in order to ignite particles from the unconstraint domain.   

    Figure 3 presents the time-temperature dependence of the first particle of the unconstraint region (i.e. θn+1) for 
different values of θign and for the specific case of χ=0.  Since the x and y-axis have been normalized with 
respect to θign and δτ, the temperature profiles interest at the same point (1,1) for all θign.   This agrees with the 
prescribed initiation of the flame where θn+1 reaches θign at time τr=δτ, where τr is the time relative to tign,n. 
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Figure 3: Temperature θ of the first particle in the unconstrained region normalized with θign as a function of τr 
normalized with δτ for various θign.  The thin line represents the case where θign =0.1, 0.2,…, 0.7, while the 
dashed thick line corresponds to θign= θlim.  The dots indicate where the ignition temperature is achieved earlier 
than the prescribed time. 

 

    For θign ≤ θlim, the particle ignition is consistent with the constraint region, where in the particular case of χ=0, 
we find θlim≈0.568.   For θign > θlim, propagation of a flame is no longer possible.  As shown on figure 3, a second 
solution δτ2 arises where θ/θign=1 at some time prior to τr=δτ and the time of ignition is no longer in phase with 
that of the prescribed ignition.  For the model to be physically meaningful, ignition should occur during a period 

of increasing temperature (i.e. dT/dτ>0).  The sudden change of the ignition sequence from δτ to δτ2 leads to the 
inability of the next particle to reach the ignition temperature, and the flame promptly quenches in the 

simulations.  Thus, in the simulations, a limiting temperature θlim occurs at a much lower ignition temperature 
than predicted by a quasi-homogeneous model, namely θign=1.  A consequence of θlim different from unity is that 
the minimum flame speed η is non-zero at the quenching condition.  Further simulations for χ non-zero show 
that θlim approaches 1 when χ increases, and thus the quasi-homogeneous limit is recovered for χ sufficiently 
large. 

4   Conclusion 

 

    The propagation limit in an idealized heterogeneous mixture is shown to be different of that of an equivalent 

homogeneous mixture predicted by thermodynamic considerations, even in the absence of heat loss.  The value 

of ignition temperature at which this new limit is encountered is almost twice that predicted by homogeneous 

theory.  Furthermore, the minimum flame speed at the quenching condition is non-zero. Both the limiting 

concentration and the minimum flame speed cannot be predicted a priory from the energy balance, but stem 

from the structural dynamics of the flame.  However, it can be shown that the solution converges toward the 

homogeneous solution when the combustion time χ approaches infinity. 
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