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1 A four-Dirac delta functions presumed PDF model

The numerical modeling of turbulent reactive flows in partially premixed situations needs at least two
scalar variables to describe the local thermochemistry. Here, we use the LW-P model of partially pre-
mixed combustion already described by Robin et al. [1] and based on the simplified thermochemistry
introduced by Libby and Williams [2]. The scalar variables of this model are the mixture fraction ξ and
the fuel mass fraction Y . Closed mean balance equations for the first and second order moments of Y
and ξ i.e. ξ̃, ξ̃′′2, Ỹ , Ỹ ′′2, ξ̃′′Y ′′ are derived and these five quantities are used inter alia to determine the
12 parameters of the four-Dirac presumed PDF: αp, ξp, Yp (p = 1, 4). The quantities (ξp, Yp) are the
positions of the Dirac delta peaks in the composition space and αp their respective magnitudes. This
model has been already successfully used by Robin et al [1] with a k-ε model to represent turbulent trans-
ports. However, such a model cannot predict flame generated turbulence and counter-gradient turbulent
diffusion. In order to take these phenomena into account a second-order LW-P model involving equations
for scalar turbulent transports and Reynolds stresses is now proposed. This new model, applicable to
flows with variable stoichiometry, is based on a development of the analysis made by Domingo and Bray
[3] for the pressure terms.
Balance equations for the turbulent scalar fluxes ρu′′i ξ′′ and ρu′′i Y ′′ (i = 1, 3) are closed by using a mass-
weighted joint PDF of ui, ξ and Y : Eq.(1). As density is constant at each Dirac delta peak position, we
can write: P̃ (ui|Yp, ξp) = P (ui|Yp, ξp). Accordingly the mean conditional velocities are given by Eq. (2).

P̃ (ui, Y, ξ) =
4∑

p=1

αpP̃ (ui|Yp, ξp)δ (ξ − ξp) δ (Y − Yp) (1) uip =
∫
uiP (ui|Yp, ξp)dui (2)

It can be shown that these conditional velocities depend only on the turbulent scalar fluxes ρu′′i ξ′′ and
ρu′′i Y ′′ and on the mean velocities ũi. The PDF defined by Eq. (1) is also used to close the different
scalar equations for mean quantities and turbulent fluxes.

2 Closure of scalar transport equations

The set of partial differential equations to be solved is given by Eqs.(3)-(7). Equation (3) for the first
moment of the passive scalar does not require further attention since no unclosed correlation appears.
Equation (4) for the second order moment of the passive scalar exhibits only two unknown terms. These
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terms are the turbulent flux of variance ρu′′kξ′′
2 and the scalar dissipation ρεξ.
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∂Ỹ

∂xk
+ 2Y ′′ω (6)

∂

∂t

(
ρY ′′ξ′′

)
+

∂

∂xk

(
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The first one is obtained through Eq.(8), and the second is closed by using a linear relaxation model for
the fluctuation decay rate, Eq.(9). Similar terms appear in Eq.(6) for the reactive scalar and in Eq.(7)
for the cross-correlation. The turbulent fluxes ρu′′kY ′′

2 and ρu′′kY ′′ξ′′ are closed using the PDF as for the
term ρu′′kξ′′

2.

ρu′′i ξ′′
2 = ρ
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Closures for the dissipation terms ρεY = ρD ∂Y ′′
∂xk

∂Y ′′
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and ρεξY = ρD ∂Y ′′
∂xk
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are the most critical
points because these terms together with the chemical contribution drive the evolution of the PDF
shape in the composition space. Here, these dissipation functions are closed using the recent proposal
of Mura et al. [4].
Additional terms related to the chemical reaction, i.e. ω, Y ′′ω and ξ′′ω appear in this last three equa-
tions. These terms are closed by using the PDF and assuming a single step global chemistry with an
instantaneous rate of fuel consumption written as follows:

ω = ρΩ = ρ(ξ, Y )B(ξ) (Y − Ymin(ξ)) exp (−Ta/T (ξ, Y )) (10)

where Ta is the activation temperature, B the pre-exponential factor and Ymin the minimum value of
Y .

3 Closure of turbulent flux transport equations

Six additional transport equations for the turbulent passive and reactive scalar fluxes ρu′′i ξ′′ and ρu′′i Y ′′
are necessary to obtain a full second-order closure. Attention is focused on the transport equations
for the turbulent reactive scalar fluxes ρu′′i Y ′′ (11). Equations for ρu′′i ξ′′ are similar but without the
chemical terms ψY

i .
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If we except the terms P Y
i , all terms of the RHS of Eq (11) must be closed. First, the diffusion terms

DY
i are modeled with the classical generalized diffusion approximation, Eq.(12). Using the PDF defined

by Eq. (1) chemical terms ψY
i are closed by Eq.(13).
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Now, considering that τik ≈ ρν ∂ui

∂xk
, a Lewis number equal to unity and high Reynolds number, we can

rewrite the dissipation terms ρεYi , Eq.(14). For a perfectly premixed system, we consider that ∂ui/∂Y

is constant accross the local flamelets. This leads to ∂ui/∂Y = ρu′′i Y ′′/ρY ′′
2. In a first approximation,

this assumption is assumed to be valid for a partially premixed system, so that dissipation terms are
closed by Eq.(15).
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The last term that requires special attention is HY
i . This term is known to be responsible for the

counter gradient diffusion effects. The corresponding term in the Rij equations i.e. u′′j
∂P
∂xi

induces the
flame generated turbulence phenomena. To close this term, the gradients of mean conditional pressures
are introduced [3] so that HY

i can be expressed as:
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Where p characterizes the conditional value at each Dirac delta peak.
The gradient of mean conditional pressures are split into two different parts: a non-reactive contribution
and a reactive contribution:
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The non-reactive part is modeled by introducing the simplified conditional mean equation of motion
already proposed by Domingo and Bray [3], Eq.(19). The reactive part is modeled by introducing a
premixed planar laminar flame relationship, Eq.(20).[
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The velocity gradient that appears in Eq.(20) is assumed to be constant across the local flame but
conditioned by the mixture fraction and can be again evaluated thanks to the PDF.

4 Results

The second-order model described in the previous section is applied to the calculation of a turbulent
reactive flow of propane and air stabilized by a plane sudden expansion of a 2-D channel [5]. The
reaction zone is fed by two streams of mixtures of different equivalence ratio (Fig.1). This experimental
configuration exhibits a large scale coherent motion that cannot be handled by using the steady RANS
approach. Numerical results are then compared to experimental data corresponding to the highest
Reynolds number for which the energy of the large scale motion is the weakest.
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Figure 1: Experimental configuration

Two calculations are performed: the first uses the first-order model described by Robin et al. [1] and
the second uses the full second-order model described here. As an example of result Fig.(2) compares
experimental and numerical profiles of turbulent kinetic energy in the combustion chamber at x1/hstep =
8.36. This result shows the ability of the second-order LW-P model to represent the flame generated
turbulence phenomena whereas the first-order model does not take this effect into account.
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Figure 2: Turbulent kinetic energy
at x1/hstep = 8.36

Figure 3: Turbulent fluxes ρu′′1Y ′′/ρ (m/s)

Figure (3) provides the numerical field of the turbulent flux ρu′′1Y ′′/ρ for the fully premixed situation
using the second-order model. As shown by the figure the turbulent flux ρu′′1Y ′′/ρ is found to be neg-
ative in the flame brush, contrary to the sign deduced from the gradient assumption −∂Ỹ /∂x1. This
result highlights the counter-gradient diffusion phenomena and confirms that gradient hypothesis used
in RANS first-order models are not valid in the present case. Other simulations have been carried out
in the more generalized case of partially premixed flows as those studied in reference [1].
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