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1. Introduction 

Even though relatively high acquisition frequencies are nowadays attained for high resolution images of the 

combustion chamber, analysis of morphological and geometrical properties of the flame requires high time 

resolution. Particularly, available techniques provide high space resolution images – but collected over different 

cycles. Cycle-to-cycle variations and thermal drift are two of the main problems in collecting and using such 

data to study time evolution of the flame. In fact, whilst frame averaging over different test sessions can be used 

to compensate for cycle–to–cycle variations at the price of information loss, each test session cannot last too 

long due to experimental engine overheating and this limits the number of values of the crank angle that can be 

collected in each test session and, as a consequence, the – even simulated – time sampling rate cannot be so high 

as it would be desirable. In earlier works, various interpolation or reconstruction techniques have been proposed 

and applied to ICE imaging experimental data [1,2]. Generally, reconstruction techniques based on physical 

concepts have proved to work better as compared to pure mathematical interpolation [3]. In this work, flame 

images are collected and recorded and then Proper Orthogonal Decomposition (POD) [4] coupled with 

interpolation is applied to reconstruct information in between consecutive measurements. More precisely, POD 

basis is determined from samples taken during experiments conducted on an optically accessible Internal 

Combustion Spark Ignition Engine [5]. Each experimental data set contains a number N of successive frames 

(512x512 pixels) collected during a number of cycles at varying crank angle. First, POD is applied to space and 

time resolved experimental data of flame luminosity taken over a number of cycles and varying crank angles in 

order to determine empirical eigenfunctions, which describe the dominant behavior of the system. Next, POD 

coefficients are calculated by performing the orthogonal projection of the ensemble of data onto the set of 

eigenfunctions. The coefficients are interpolated over the crank-angle in order to reconstruct the luminosity field 

between consecutive measurements. Reconstructed luminosity fields are then compared with the available (but 

not used in the computations) experimental data.  

2. Experimental 

Figure 1 shows the experimental apparatus for spectroscopic, 2D-digital imaging and chemiluminescence 

measurements, along with a schematic diagram and a photograph of the engine used in the present investigation. 

This is an optically accessible single cylinder ported fuel injection (PFI) spark ignition (SI) engine. The piston is 

flat and made transparent through a quartz window (Φ=57mm). The optical path includes an inclined (45°) 

mirror located in the bottom of the engine. The engine has a specially machined cylinder head of a four valve 

commercial automotive engine with a pent–roof combustion chamber and the spark plug was centrally located. 

During combustion, the light emitted through the quartz window is reflected towards the optical detection 

assembly by a 45° inclined UV–visible mirror located at the bottom of the engine. The mirror has elliptical shape 

(47×66 mm): its size allows to collect images from a large portion of the chamber, as shown in Figure 2. During 

spectroscopic investigations the combustion light emission was focused by an UV lens (100 mm focal length) 

onto micrometer controlled entrance slit of a spectrometer with 150 mm focal length, f/3.8 aperture, 300 

groove/mm grating (Fig. 1a). In order to investigate natural emissions from ultraviolet to visible, the central 

wavelength of spectrometer was fixed at 400 nm. The output of the spectrometer (250 nm spectral range) was 
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coupled to an intensified cooled CCD camera (ICCD) with an array size of 512x512 pixels and 16-bit dynamic 

range digitisation at 100 kHz. The ICCD spectral range spread from UV (180 nm) until visible (700 nm).  
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Figure 1. Schematic diagrams of experimental apparatus for (a) spectroscopic, (b) digital imaging and 

chemiluminescence measurements. To the right, drawing and photograph of the PFI SI engine. 

 

   

Figure 2. To the left: engine specifications; to the right: Field of view of the combustion chamber. 

 

The ICCD can acquire high space resolution images but not more than one per cycle. This results in CAD 

sequences that do not belong to the same cycle. There are three ways to construct a time-resolved sequence: 

Single shot (one per crank angle), short exposure time, one test session (high spatial definition ↔ uncorrelated 

time sequence); Single shot (one per crank angle), long exposure time, one test session (lower spatial definition 

↔ more regular flame pattern); N accumulated shots per crank angle, multiple test sessions (blurred spatial 

definition ↔ more correlated averaged time sequence). 

2. POD Method 

Suppose we are given a time series, obtained from simulation or experiment, ( )t
u x  where t denotes time 

and x denotes position in space. In practice, in numerical models the spatial domain is discretised and the number 

of time samples is finite, therefore usually the sampled data set is a vector–valued function given as a matrix: 
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where N is the number of positions in the spatial domain and M is the number of samples taken in time. It can be 

shown that a suitable POD basis { }1 2, , , Nϕ ϕ ϕΦ = …  is obtained by solving the eigenvalue problem C λΦ = Φ  

where C is the averaged autocorrelation matrix ( , ') ( ), ( ')C x x U x U x=  and brackets denote time-averaging. 

Using the POD modes, the solution  ( )
t

u x  can be expressed by a linear combination of the eigenfunctions: 

 ( ) ( ) ( )
1

K

k k k

k

u x a t xϕ
=

=∑�  (1) 

where K < N is the number of modes used for truncation and
k

a  are modal coefficients that can be determined by 
projection of the ensemble of data onto the POD modes. In this work we use the Sirovich approach (see Holmes 
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et al. 1996). Namely, when – as in this case – the number of collected time samples is smaller than the space 
discretization, it is more efficient to assume that the eigenfunctions are linear combinations of the snapshots: 

 1
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i i

i

x b u xϕ
=

=∑
 

Hence, substituting into the original POD problem we obtain CB Bλ= , where C is the space correlation matrix: 

 1
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The POD eigenvalue problem is solved and the POD eigenfunctions are determined as a combination of 

eigenvectors and the “snapshots”. The coefficients of POD eigenfunctions are calculated by conducting the 

orthogonal projection of the data onto the set of POD basis functions. The luminosity field is reconstructed by 

using different numbers K of POD eigenfunctions as per Eq. (1). The luminosity fields between successive 

experimental measurements (and before the first and after the last CAD) were reconstructed by performing 

interpolation (extrapolation) of modal coefficients 
k

a  that are simply function of the crank angle degree. 

3. Results  

In this paper, the POD procedure was applied to two experimental data sets: Set 1 has 6 frames containing 

accumulated luminosity collected during 10 experiments for a number of cycles at varying CAD in the range of 

1÷6, ∆CAD=1; Set 2 has a long sequence of single–shot successive frames collected during a number of cycles 

at varying CAD in the range of 0÷26.2, with ∆CAD=0.4. 

In both cases the correlation matrix was calculated and the eigenvalue problem was solved in order to 

determine empirical eigenfunctions, which describe the dominant behavior of the system. Then, the POD 

coefficients, that are the function of the crank angle degree, were calculated by performing the orthogonal 

projection of the ensemble of data onto the set of eigenfunctions. The coefficients were interpolated over the 

CAD domain and the luminosity field between consecutive measurements was reconstructed. For the first data 

set, all six experimental accumulated luminosity snapshots were included in the computations: then 60 

consecutive snapshots were reconstructed in the CAD range 0.6÷6.5, ∆CAD=0.1. In the second case, since we 

had long time series, the procedure was checked against experimental data. Only snapshots with odd indexes 

were used to determine the basis: hence, we were able to compare the reconstructed luminosity fields with the 

available, but not used in the computations, experimental data. 

Set 1. The leading “eigenflame” for this data set captures in more than 96% of the correlation energy, hence 

it should be able to describe correctly the dominant behavior of the luminosity field. Figure 3 compares the 

sequence of the six experimental frames (on top) and the corresponding reconstruction with one eigenflame 

(dominant POD mode, bottom). On the right, the reconstruction error is displayed.  

 

 

Figure 3. Sequence of the six experimental frames (on top) and the corresponding reconstruction with one 

eigenflame (dominant POD mode, bottom) for CAD between 1 and 6. On the right, reconstruction error. 
We define the relative average error of the kth order POD reconstruction as: 
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As expected, the relative error decreases with increasing the number of eigenfunctions employed. A dependence 

of the error on the crank angle also exists, although non monotonic. Interpolation was then used to construct 
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frames in between experimental images. Figure 4 shows such an “artificial” sequence from, obtained with 

POD/Spline interpolation by using all of six eigenmodes. 

 

 

Figure 4. POD/Spline reconstructed frames between experimental at CAD=5 (F:45) and CAD=6 (F:55). 

 

Set 2. The single-shot experimental sequence delivers a much clearer definition but has an irregular character, 

due to the fact that shots cannot be acquired in the same engine cycle. Both features are clearly seen in Figure 5, 

top row. The bottom row shows the “artificial” sequence produced by using all 32 modes extracted by applying 

POD analysis to the odd-numbered experimental frames. Odd frames are coincident with experimental whereas 

the “artificial” even-numbered frames are rather different from the available experimental shots taken at 

corresponding crank angles. The POD/Linear interpolation delivers, as expected, a more regular time sequence. 

 

 

Figure 5. Experimental (top) and POD/Linear reconstructed sequence of single-shot images. 

4. Conclusions  

Results of reconstruction from POD basis proved to be successful when checked against available 

experiments even with just one basis function. The single–shot time sequence from experiments suffers from 

being uncorrelated, nevertheless the basis set built from one half of available shots permits a veritable 

reconstruction of intermediate frames not included in the decomposition. Future work will address the 

construction of POD basis from repeated single–shot frames individually considered rather than accumulated. 

Also, reconstruction of sequences from frames taken at different crank angle but in one cycle (even with less 

resolution) will be attempted.   
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