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1 Introduction

Safety concerns associated with use of hydrogen as a fuel have led to renewed interest on chain-branching
kinetics [1] and its effect on detonations. Short & Quirk [2] analyzed the stability of detonation waves for
three step chain-branching kinetics. Liang & Bauwens [3] investigated three and four step schemes that
approximate the chain-branching behavior of hydrogen-oxygen, and their effect on detonation structure.
Extensive experimental work has been performed, such as for instance Pintgen et al. [4].

The most significant limitation of the single step model is that it unavoidably associates heat release
with consumption of reactant in the induction zone perturbations. For chain-branching chemistry, both
reactant consumption and chain-branching radical production are likewise small in the initiation zone.
But in contrast with the single step model, heat release, now associated primarily with termination, is
usually negligible, even when compared with the small concentration of the chain-branching radical. This
key difference motivates the current work, an analysis in the slow initiation limit of the steady planar
wave structure, for chain-branching chemistry. Previous analytical work included a high activation
energy limit, plus eventually additional assumptions on the relative magnitudes of the various rates
[5, 6, 7, 8]. In the current work, the small initiation rate assumption is explored by itself, assuming
arbitrary activation energies. This assumption is typically quite accurate; thus the model below will
often yield results indistinguishable from full integration.

2 Formulation: Rankine-Hugoniot Algebra

The detonation structure is described by the steady one-dimensional reactive, inviscid and non-conductive
Euler’s equations. The Rankine-Hugoniot formulation, made dimensionless scaling density and temper-
ature by their preshock values, velocity by the preshock speed of sound, the heat release by the preshock
speed of sound squared, and finally, pressure by γ times the preshock pressure, yields
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in which γp = ρT and q = (1 − λ1 − λ2)Q. The chemical rate laws complete the formulation. Scaling
the rate multipliers by the post-shock value of the termination rate multiplier, and length by c0uN/kTN

(in which c0uN is the dimensional value of the post-shock velocity),
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in which kT is a function of p and T . It is convenient to introduce TI and TB: kI = exp EI/TI and
kB = exp EB/TB. At the shock, only reactants are present, but no chain-branching radicals, so λ1 = 1
and λ2 = 0. Using the local Mach number M as the independent variable, the model is reduced to
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Introducing heat release,
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Here the upper root corresponds to a supersonic branch (i.e. a weak detonation) while the lower root
describes a deflagration preceeded by a shock at the origin q = 0, where ∆ = ∆N . Indeed, initially, the
upper root yields the preshock value M0, while the negative root corresponds to the post-shock value.
The wave ends when chemistry is complete, i.e. q = Q. Existence of a complete solution up to that
point requires ∆ to be positive up to that point. The CJ wave corresponds to the limit case where δ = 0
at the CJ point, where q = Q.

Also, ∆ = ∆N − 1 + λ1 + λ2. Furthermore, introducing κ(M):
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T and q are related by
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3 Small Initiation Rate

Introducing the symbols ǫ and a, and the variable θ,

ǫ = exp

(

EI

TI
−

EI

TN

)

, a = ρN exp

(

EB

TB
−

EB

TN

)

, θ =
EB

TN

(

1 −
TN

T

)

(7)

initiation is taken to be slow in the sense that ǫ << 1. The parameter a, of order unity, determines the
location of the post-shock state on the explosion diagram. If a > 1, chain-branching is already stronger
than termination. The Neumann point, is then in the explosion region. Using the notation in Eqs. (7),
chemistry becomes
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κN is positive as long as the heat release or overdrive are high enough, provided that M2
N ≥ 1/γ [9, 5].

For x = O(1), the solution only varies by order ǫ. Using the notation λi = 1+ ǫλ̃i + ǫ2λ̂i and θ = ǫφ,
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Similar equations are obtained for O(ǫ2). One can readily solve for both order ǫ and ǫ2. The former is:
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4 Explosion region (a > 1)

The solution in the initiation zone increases exponentially. On the other hand, the order unity formula-
tion, obtained by setting ǫ = 0 in Eqs. (9), for leading order changes in both λ1 and λ2, is
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Chemistry becomes
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Both equations are integrated:
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Close to ∆N , λ1 → 1 + a(∆ − ∆N ). So
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The limit is singular. Thus the Neumann point cannot be used as the limit of integration. Instead,
one defines M∗ = 1/

√
γ, the point where temperature peaks (assuming overdrive is strong enough for a

temperature peak to occur). In the initiation zone,
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so that ∆ − ∆N is of order unity for x of order− log ǫ and the second order term remains small. Thus

∆ − ∆N → ǫ
− exp(a − 1)x

(a − 1)2
, x → x∗ =

− log ǫ + log[(a − 1)2(∆N − ∆)]

a − 1
(21)

and for ∆ → ∆N ,
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This determines the length of the initiation zone, which is of order − log ǫ.

5 No explosion region (a < 1)

In the initiation zone λ̃2 now approaches the constant 1/(1− a), while λ̃1 and φ change linearly with x:
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It will take a length of O(1/ǫ) until changes of oreder unity take place, hence the rescaling χ = xǫ. This
yields a solution in which λ1 now experiences order unity changes, but λ2 = ǫλ̃2.
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At leading order, ∆ = ∆N −1+λ1. Thus one can use M2(∆) and the relationships yielding θ and ρ/ρN .
The solution is
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This solution breaks down when λ1 → λ∗
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where the slow raise in temperature finally results in chain-branching balancing the effect of termination.
One can show that the scaling η = (x−x∗)ǫ1/3 resolves the region close to the limit, with λ1 = λ∗

1+ǫ1/3λ̂1

and λ2 = ǫ2/3λ̂2. A complete solution for that zone can then be obtainedi, using Airy functions. Beyond
that zone, chain-branching has become stronger than termination and the solution follows the same
formulation as in the explosion case. The length of the reaction zone remains dominated by the first
region of order 1/ǫ and determined by the value of χ∗.

6 Conclusion

The small initiation rate limit model yields the structure of the initiation zone, in both the explosion
and no explosion cases. Closed form integral expressions were derived for both cases. In the explosion
case, the initiation length equals − log ǫ, up to a correction of order unity; in the no-explosion case, the
length is of order 1/ǫ. In the presentation, numerical results will be shown, including complete profiles,
assuming kT is constant.

References

[1] N. N. Semenov, Chain Reactions, Goskhimizdat, Leningrad 1934. English translation, Oxford 1935.

[2] M. Short J. & J. Quirk, J. Fluid Mech. 339 (1997) 89–119.

[3] Z. Liang & L. Bauwens, Proc. Combust. Inst. 30 (2005) 1879–1887.

[4] F. Pintgen, C. A. Eckett, J. M. Austin & J. E. Shepherd, Combust. Flame 133 (3) (2003) 211–229.

[5] J. D. Buckmaster & G. S. S Ludford, Proc. Combust. Inst. 21 (1987) 1669–1676.

[6] Birkan, M. & Kassoy, D.R., Combustion Science Technology 44 (5-6) (1986) 223–256.

[7] Kapila, A.K., J. Eng. Mathematics 12 (1978) 221–235.

[8] Del Alamo, G. & Williams, F. A., AIAA Journal 43 (12), (2005) 2599–2605.

[9] Kassoy, D. R. & Clarke, J. F., J. Fluid Mech. 150 (1985) 235–280.

21st ICDERS - July 23-27, 2007 - Poitiers 4


