
An Adaptive Reduced–Order Chemical Model

J. C. Lee
�
, H. N. Najm, S. Lefantzi, J. Ray,

Sandia National Laboratories, 7011 East Ave, MS9051, Livermore, CA 94550, USA.

M. Frenklach
University of California at Berkeley & Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA.

M. Valorani
University of Rome “La Sapienza”, 00184 Roma, Italy.

and D. A. Goussis
Agiou Georgiou 49, 26500 Rio, Greece.

1 Introduction

We demonstrate a new strategy for construction of an adaptive chemistry model. The technique is based on a slow
manifold projection scheme derived from computational singular perturbation (CSP) combined with the Piecewise
Reusable Implementation of Solution Mapping (PRISM) [1–3]. PRISM is used to tabulate the response surfaces of
the CSP tensors. We examine the effectiveness of this scheme by considering a model problem with variable stiffness.
We find that, while the degradation in accuracy is minimal, the CPU-cost of the CSP projection method can potentially
be reduced substantially using this tabulation strategy, which bypasses the CPU-intensive CSP analysis. Furthermore,
we find that the size of the hypercubes used to build the PRISM tabulation can be very large and their dimensionality
can be reduced. The dimensionality reduction is achieved by collapsing the dimensions corresponding to the CSP-
radicals. This reduction in the hypercubes’ dimensionality is a key aspect of the new strategy.

We deal with a general dynamical system defined as a set of ODEs

����
����� �	�
 ��
��� ��������
� �	�� ��������� (1)

with a large spectral radius, i.e. stiff. CSP analysis starts with a timescale decomposition as follows: an ascend-
ing sequence of time scales ����� �"!#�%$"$"$&�'� � and the corresponding sequence of vectors and co–vectors(*) �+-, �/.10,�2 354 �76 � $"$8$ �:9<; [4–10], are used to construct a tensor =
> to make Eqn. (1) non-stiff:

�/��@? �*� �
= > �	A
 ��B�C� = ><�7DFEHGJILK �CM N �+ I .O0I , where P is the number of exhausted modes or the number of modes that
are in “quasi–equilibrium” [6]. This forms the basis of the CSP–projection scheme, first proposed by Valorani and
Goussis [5], which consists of 3 steps.

1. Obtain the CSP–slow–manifold projection tensor = > and the radical correction tensor QSR (see step 3) using the
solution at the current time;

�� 
 � � and estimate the proper time step size using � NBTU� .
2. Use an explicit step to advance

�� 
 � � to �� 0 
 �WVYX�� � using the modified source term =
> �	�
 �� 
 � �Z� .
3. Evaluate the contribution of the exhausted modes (to leading order) using the “radical correction” [11] i.e.�� 
 �LVSX�� � � ��@0 
 �LV[X�� � E Q R �	A
 ��B0 
 �\V[X�� �Z� , where the radical correction tensor is defined as Q R ��G I:K NI:K � �+ I � I .10I .

Out of the three steps, #1 is most computationally intensive if the CSP analysis is carried out in full. The CSP analysis
used here, an improved direct method, is based on a combination of a Singular Value Decomposition (SVD), an
eigen–solve, and a direct matrix inversion. The SVD step is taken to improve the condition number associated with
the inversion step to obtain the co–vectors. To carry out the projection scheme, we only need two tensors = > and Q[R .
]
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The key point in the present development is the construction of efficient models for these two tensors to bypass a direct
CSP solve. Step #2 is an efficient explicit scheme stabilized by the CSP tensors when time step size commensurate
with �8NBTU� – not ��� – is used. In a series of numerical experiments on dynamically strained premixed flames, we
found that the CSP–slow–manifold does not change significantly in space (in the flame–normal coordinate). In fact,
the flame–normal coordinate can be partitioned into 25 parts such that, within each, the CSP–slow–manifold varies
within ����� . In addition, the CSP–slow–manifold varies with the “slow” time scale ( � NBTU� ); thus, when we use the
PRISM technique to tabulate = > and Q[R , we can use large design factors (“big” hypercubes); furthermore, we can
reduce the dimensionality of the hypercubes by collapsing the dimensions associated with the CSP–radicals [6]. The
large design factor and the dimensionality reduction in the hypercubes are made possible by the CSP procedure and
they offer distinct advantages over the traditional use of PRISM in tabulating the integrated results.

2 Model Problem

We will demonstrate this new CSP-PRISM technique with a 4-D model problem:

� � ,X�� � 6� ��� , � E � , V � , TU�
6 V � , TU�
	 E�� K �
� K , TU�


 � � TU�
 6 V � � TU� � !
�C� 4 � 6 � $8$"$ �L9�� ��� 6 (2)

where
9 ��� and � , � � ��� , . The CSP–slow–manifolds are defined (to leading order) by

� , E � , T � ? 
 6 V � , TU� � ���
when the 4���� mode becomes exhausted; and the associated CSP–radical is

� , . Consider the case when P � 6 . We
tabulate = > and Q R by taking samples in the hypercube which is expanded only in the dimensions of

( � ! �:�����L����; ;
while

� � is evaluated with
� � � � ! ? 
 6 V � ! � . Obviously, if P ��� , we can use a two-dimensional hypercube

(expanding only
���

and
���

) and a similar expression to evaluate
� ! . Table 1 presents a 3-parameter 18-run

�
-optimal

design [12]. We construct a single hypercube tabulation,

run #  !  �  � run #  !  �  �
1 0 -1 -1 10 1 -1 -1
2 1 -1 1 11 1 0 -1
3 1 -1 0 12 -1 -1 0
4 -1 -1 1 13 1 1 0
5 1 1 1 14 0 1 1
6 -1 -1 -1 15 1 0 1
7 -1 1 -1 16 0 -1 1
8 -1 0 1 17 -1 1 1
9 1 1 -1 18 0 0 0

Table 1: A three-variable fractional factorial design with 18 runs

where  , �"!$#&% 
 � , ? � R, �:? !$#&%�' � 4 �(� �*)5� � (a log–scaled design);
� R, is the center point of the hypercube; the design

factor is '&� 6+� , which corresponds to a very large hypercube; and the dimension of  � is not expanded.

We first consider the accuracy of the underlying projection method itself. The log–log graph on the left in Fig. 1 indi-
cates that the CSP–slow–manifold projection method is highly accurate ( , 
 6+� ��- � errors are readily obtainable) even
when the system is moderately stiff, the CSP tolerance parameters chosen are moderately stringent, and an aggressive

time step size is used. The relative error is given by ./10�2 � ���3 �5476 G98 K �:4 M , K �8 K �CM , K � ; 
 � , 
 � 8 � E � I=<?>, 
 � 8 �L�:? � I*<@>, 
 � 8 �?A !CB �EDL!
where

9 > is the number of time steps taken, and
� I=<?>, is the reference solution which was calculated (to machine accu-

racy) with the backward–difference implicit method. The accuracy of the underlying projection scheme is dependent
on the tolerance parameters used to perform the CSP analysis itself, and an additional parameter F that determines
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Figure 1: Left:The average ��� error ( ���� 2 ) from �	��
 to ����
 for the 4-D problem with various values of � integrated with the
CSP–projection scheme versus time step sizes. The first four line-plot cases ( ������
�� � , ������
�� � , ��
�� � , 
	����
�� � ) illustrate the effect
of increased stiffness on the ��� error behavior. The overlaid plots with circle symbols ( ����������
 � � ), illustrate the effect of reusing
the CSP vectors, using the tabulated fast space (not with PRISM, but with a simple linear interpolation technique), and reducing
the CSP tolerances, as indicated. Right: Comparison of the solutions of the model problem defined in Eqn. 2 obtained with the
original projection scheme with the CSP analysis carried out at every time step in the duration 
�� ���!
 and the one obtained with
the CSP–PRISM strategy i.e. with tensors "$# and %'& tabulated using the d–optimal design points found in the reduced dimension
hypercube (without any CSP analysis) during time integration in the duration 
�( 
)
��+*,�-*.�/( 0)1 . The parameters defining the
model problem and the time integration procedure are: ������
 � � and 23�4
�( 
5
 .

the time step size (
X�� � F76 � NBTU� ). In all the plots shown in the LHS graph, =
> and Q R were evaluated either from

first principles at every step or reused until P changes (a CPU cost saving method). We also performed one calcula-
tion with the CSP analysis carried out in full in every step and saved the CSP tensors at eight selected points in time
(evenly spaced in the time interval 8 � � �59 ). We then repeated the same calculation but used these eight sets of data to
estimate the CSP tensors by linear interpolation and we report the results in the same figure (curve marked with solid
diamonds). It can be observed that the use of approximated CSP tensors by means of the “reuse” strategy or the linear
interpolation method did not change the accuracy of the projection scheme significantly. Such a robustness of the
projection scheme justifies the proposed tabulation technique.

We now consider the tabulation of the CSP tensors using the CSP–PRISM technique deployed in a reduced–dimension
hypercube. We construct second-order polynomial curve fits, with the sampling points shown in Table 1, for compo-
nents of = > and Q[R using the standard least-squares method; and store the polynomial coefficients. Here, the time
scales � , need not be tabulated since they remain constant. In the time integration of the model problem, when the
variables fall within the range of validity of a hypercube tabulation, both =@> and Q R are reconstructed using these
polynomials which can be evaluated at a CPU cost substantially lower than the direct CSP analysis. The tabulation
can also be pre–constructed to provide additional savings in CPU time.

The single hypercube tabulation so created is valid in the time range of � $ �&� 6 � � � � $ ) � for one of the computations
reported in the LHS plot in Fig. 1 – the one with � � 6 � � ! and F � � $ � � . We also plot, in the RHS graph in Fig.
1, the solution from

� � � to
� � � obtained with the original projection scheme. The solution in � $ �&� 6 � � � � $ ) �

calculated with the tabulated CSP tensors is shown delineated with circle symbols. The relative difference between
the results obtained with the original projection method and those with the tabulation technique are also reported on
the same graph (line with rectangles). It can been seen that the solution obtained is most accurate near the center point
used to construct the hypercube tabulation, and that the solution at the end point

� � � $ ) � agrees with those obtained
with the full CSP–projection scheme to within 6+� � - , which is a very promising for a calculation performed with a
single large hypercube.
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3 Conclusions

We have demonstrated that the combination of the CSP–slow–manifold projection method and PRISM offers a new
way to construct an adaptive reduced–order model for a stiff dynamical system. CSP allows not only a reduction
in dimensionality, but also using larger hypercubes. By constructing tabulations for the two CSP tensors, we have
an efficient explicit time integration construction. The test performed on a stiff model problem demonstrated the
feasibility of this novel model construction method. It showed that high level of accuracy is readily achievable. Future
work will concentrate on the construction of such an adaptive model for chemical kinetic system that are of relevance
to the area of combustion.
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