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Introduction

In [1] extensive experimental data on premixed expanding spherical flames have been analysed
and it was concluded that starting from a certain moment the averaged flame radius<r> grows
as<r>∝ t3/2 rather than<r>∝ t. The phenomenon was linked to the cellularization of flames,
which was well known from experiments too. Indeed, the appearance of cellular patterns increases
the flame surface area, hence the fuel consumption, and hencethe averaged flame expansion rate.

The cellularization of flame fronts was, in its turn, associated with intrinsic combustion insta-
bilities. The effect of the hydrodynamic combustion instability on expanding spherical flames was
studied in [2] using the linear perturbation theory combined with phenomenological assumptions.
Later, the approach was further improved and freed from the phenomenological assumptions [3].
These linearized solutions confirmed the onset of the instability of the flame front but could not
quantify its cellularization and acceleration because thelatter phenomena are essentially nonlinear.

A simple, yet physically reasonable, nonlinear model of hydrodynamically unstable expanding
spherical flames was suggested in [4,5]. Numerical studies of this model confirming that there is a
time instancet∗, such that the flame expansion rate behaves like<r>∝ t3/2 for t > t∗.

Permanent growth of size of a spherical flame as it expands prompts studies of the effect of the
size of a planar flame on its propagation speed as the first steptowards the understanding of the
acceleration mechanism of the expanding flames. The investigation of dynamics of planar flames
revealed a definite correlation between the size of the flame and its spatially averaged propagation
speed, see e.g. [6]. The effect was explained by proving highsensitivity of planar cellular flames
to particular types of linear perturbations, see [6–9]. By continuing calculations reported in [6]
for even larger planar flames, we obtained that their propagation speed no longer grows after a
certain critical flame size is reached. In this paper we are interested in extending these findings
for planar propagating flames to the expanding ones. In particular, we are studying the possibility
of stabilization of the expansion rate for large enough timeintervals, when the flame size grows
sufficiently large.

Because of their physical nature simple nonlinear models of expanding flames [4, 5] are valid
only locally. Therefore, the results obtained when applying them to the whole flame are instructive
indeed, but still inconclusive and cannot be accepted as theadequate theoretical model of cellu-
larization and acceleration. A physically consistent global model of flames of arbitrary smooth
enough geometry was developed in [10]. Mathematically, theapproach projects the governing
equations to the flame surface reducing mathematical dimension of the problem by one. How-
ever, the resulting equation is still extremely costly fromthe computational point of view and only
two-dimensional simulations have been carried out so far.

A compromise between universality and computability was suggested in [11], where consider-
ation was limited to a narrow but still very practical case offlames which do not deviate from the
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spherical ones significantly. On technical side the model combines the operator of the linearized
problem obtained in [2] for the expanding spherical flame in terms of spherical harmonics expan-
sions and a Huygens type nonlinearity specific to the local nonlinear model [4, 5]. Physically,
model [11] is consistent with [10] and is robust and plausible enough to simulate the cellulariza-
tion of expanding spherical flames in three spatial dimensions. At the time of writing of this paper,
the flame sizes we were able to reach in our computations do notexceed those reported in [11]
significantly and are not large enough to match our two-dimensional calculations. However, an
extrapolation of data obtained in computations we carried out so far, shows that numerical studies
of the parallelised three-dimensional model [11] on the time scales required for comparison with
the two-dimensional model [4,5] are possible.

Mathematical Models and Computational Algorithms

Let us consider an expanding flame front and assume that its surface is close enough to a
sphere and that every point on the flame surface is uniquely defined by its distancer = r(θ, φ, t)
from the origin for0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, andt > 0. It is convenient to represent such a
flame as a perturbationΦ(θ, φ, t) of a spherical surface of a reference radiusr0(t), i.e. r(θ, φ, t) =
r0(t) + Φ(θ, φ, t). Then, the Fourier image of the governing equation of the flame front evolution
in the nondimensional notations suggested in [4,5] can be written as

dΦ̃k

dt
=

{
−

1

[r0(t)]2
|k|2 +

γ

2r0(t)
|k|

}
Φ̃k −

1

2[r0(t)]2

∞∑

l=−∞

l(k − l)Φ̃lΦ̃k−l + f̃k(t). (1)

Here|k| < ∞, t > 0, f̃k(t) are the Fourier components of the properly scaled upstream perturba-
tions of the unburnt gas velocity fieldf(φ, t), and initial values of̃Φk(0) = Φ̃

(0)
k are given.

System (1) is solved numerically by neglecting the harmonics of orders higher than a finite
integer numberK > 0. Then, the nonlinearity can be represented as a circular convolution and
evaluated effectively with the FFT. Also, we found that the stability of the numerical integration
scheme suggested in [4] can be improved significantly by calculating the contribution from the
linear terms in (1) analytically. Thus, the linear terms, i.e. the source of physical instability, are
tackled exactly and only the nonlinear ones, with the dumping effect, are approximated.

Equations of the three-dimensional model [11] can be written in terms of the spherical harmon-
ics expansion coefficients̃Φn,m(t) of Φ(θ, φ, t) as

dΦ̃n,m(t)

dt
= ω(n, t)Φ̃n,m(t) +

1

2[r0(t)]2
Ñn,m(t) + T̃n,m(t) + f̃n,m(t). (2)

Here|n|, |m| < ∞, t > 0, f̃n,m(t) are the spherical harmonics coefficients of the properly scaled
upstream perturbations of the unburnt gas velocity field, and initial values ofΦ̃n,m(0) = Φ̃

(0)
n,m

are given. The mathematical formulas for the linear response ω(n, t), the spherical harmonics
coefficientsÑn,m(t), of the nonlinear term, and̃Tn,m(t), of the artificial term, added in order to
prevent translations of the flame front as the whole object inspace, are available somewhere else.

A computational algorithm similar to [11], was used in this work. In addition, the stability
of the numerical integration scheme was improved by evaluating the contribution from the linear
terms analytically and the code was parallelized in order tospeed up the computations and to use
larger data sets.
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Computational results

Typical shapes of the flame fronts governed by (1) over large time intervals are illustrated in
Fig. 1. The graph of[r(φ, t)− <r>]/<r> for t = 7.65 × 104 shows that the wrinkle amplitudes
are up to 10% of the averaged flame radius. The explicit forcing was not applied in this example.
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Figure 1: Evolution of a spherical flame governed by (1). Herevalues ofr(φ, t) are in the left and
[r(φ, t)− <r>]/<r> for t = 7.65 × 104 are in the right. Positive values of the latter are in blue
and negative ones are in red;γ = 0.8, f(φ, t) ≡ 0.

Velocities of the planar and spherical flames are compared inFig. 2. Power law approximations
(t− t∗)

α for the expansion rate of the spherical flame are also depicted there. For the time interval
[2.2 × 103, 7.65 × 104] the optimalα ≈ 0.34. For earlier timest ∈ [2.2 × 103, 2.0 × 104], the best
approximation is withα ≈ 0.47, i.e. almost1/2. On the other hand, as time goes by, the expansion
rate slows down and fort ∈ [3.0 × 104, 7.65 × 104] we gotα ≈ 0.23.
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Figure 2: Space averaged velocity for spherical (left) and time-space averaged velocity for planar
(right) flame fronts versus timet and flame sizeL respectively. Hereγ = 0.8 andf(φ, t) ≡ 0.

An example of evolution of a random three-dimensional perturbation of a spherical flame is
illustrated in Fig. 3. Note, the space and time scales in (1) and (2) are different. Their ratios are

4π/γ and
4πγ(2 − γ)

(1 − γ)[
√

1 + γ(2 − γ)/(1 − γ) − 1]
respectively, see [4] and [11]. .
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Figure 3: Evolution of a spherical flame;t ≈ 40 (left) andt ≈ 72 (right). Hereγ = 0.764.

Conclusions

Long time interval simulations of a simplified model of the expanding spherical flames indi-
cated that their expansion rate slows down as the flame size grows. The saturation of the planar
flame propagation speed as their size grows was established too. Hence, a hypothesis of stabiliza-
tion of the spherical flame expansion rate over finite time interval is suggested.

In order to verify the hypothesis, numerical simulations ofa more sophisticated model of a
three-dimensional spherical expanding flame were initiated. Using parallel techniques the evolu-
tion of such a flame has been successfully simulated to a stagewhen wrinkles appear and form a
well developed cellular structure.
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