How L argethe Rate of Expansion of a Spherical Flame Can Grow?

V. Karlin and J. Mai
University of Central Lancashire, Preston, UK

Corresponding author, V. Karlin: VKarlin@uclan.ac.uk

I ntroduction

In [1] extensive experimental data on premixed expandimgspal flames have been analysed
and it was concluded that starting from a certain moment vieeaged flame radiusr> grows
as<r>o t32 rather than<r>o t. The phenomenon was linked to the cellularization of flames,
which was well known from experiments too. Indeed, the apgreze of cellular patterns increases
the flame surface area, hence the fuel consumption, and tienegeraged flame expansion rate.

The cellularization of flame fronts was, in its turn, asstegiawith intrinsic combustion insta-
bilities. The effect of the hydrodynamic combustion ingigbon expanding spherical flames was
studied in [2] using the linear perturbation theory comdiméth phenomenological assumptions.
Later, the approach was further improved and freed from tempmenological assumptions [3].
These linearized solutions confirmed the onset of the ingtabf the flame front but could not
guantify its cellularization and acceleration becausédatier phenomena are essentially nonlinear.

A simple, yet physically reasonable, nonlinear model ofrbggnamically unstable expanding
spherical flames was suggested in [4,5]. Numerical studigssomodel confirming that there is a
time instance., such that the flame expansion rate behavesdike ¢3/2 for ¢ > t,.

Permanent growth of size of a spherical flame as it expanasgisostudies of the effect of the
size of a planar flame on its propagation speed as the first@tgyds the understanding of the
acceleration mechanism of the expanding flames. The iga&in of dynamics of planar flames
revealed a definite correlation between the size of the flardetsa spatially averaged propagation
speed, see e.g. [6]. The effect was explained by proving $egisitivity of planar cellular flames
to particular types of linear perturbations, see [6-9]. Bgtouiing calculations reported in [6]
for even larger planar flames, we obtained that their prap@yapeed no longer grows after a
certain critical flame size is reached. In this paper we alerasted in extending these findings
for planar propagating flames to the expanding ones. Inquéati we are studying the possibility
of stabilization of the expansion rate for large enough timervals, when the flame size grows
sufficiently large.

Because of their physical nature simple nonlinear modelxghrding flames [4, 5] are valid
only locally. Therefore, the results obtained when apgyhrem to the whole flame are instructive
indeed, but still inconclusive and cannot be accepted aadbguate theoretical model of cellu-
larization and acceleration. A physically consistent glaimodel of flames of arbitrary smooth
enough geometry was developed in [10]. Mathematically,approach projects the governing
equations to the flame surface reducing mathematical dioemd the problem by one. How-
ever, the resulting equation is still extremely costly frthra computational point of view and only
two-dimensional simulations have been carried out so far.

A compromise between universality and computability wagssted in [11], where consider-
ation was limited to a narrow but still very practical casdlames which do not deviate from the
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spherical ones significantly. On technical side the modeilmoes the operator of the linearized
problem obtained in [2] for the expanding spherical flameenmis of spherical harmonics expan-
sions and a Huygens type nonlinearity specific to the localinear model [4, 5]. Physically,
model [11] is consistent with [10] and is robust and plawsishough to simulate the cellulariza-
tion of expanding spherical flames in three spatial dimerssiét the time of writing of this paper,
the flame sizes we were able to reach in our computations dexoeted those reported in [11]
significantly and are not large enough to match our two-dsi@ral calculations. However, an
extrapolation of data obtained in computations we carrigdso far, shows that numerical studies
of the parallelised three-dimensional model [11] on theetsoales required for comparison with
the two-dimensional model [4, 5] are possible.

Mathematical M odels and Computational Algorithms

Let us consider an expanding flame front and assume thatritscsuis close enough to a
sphere and that every point on the flame surface is uniqudiyedkby its distance = (0, ¢, t)
from the origin for0 < 6 < 7, 0 < ¢ < 2w, andt > 0. It is convenient to represent such a
flame as a perturbatiob(6, ¢, t) of a spherical surface of a reference radiys), i.e. (0, ¢,t) =
ro(t) + ®(0, ¢,t). Then, the Fourier image of the governing equation of thedlfnont evolution
in the nondimensional notations suggested in [4, 5] can ligewras

2Tk _ ) 1 2 Y =~
dt { [ro(t)P’k' +2ro(t)’k’}q)k Zl DD + fr(t). (1)

Here|k| < oo, t > 0, fk( t) are the Fourier components of the properly scaled upstreatarpa-
tions of the unburnt gas velocity fielt{¢, ), and initial values ofb,,(0) = & are given.

System (1) is solved numerically by neglecting the harnmmborders higher than a finite
integer numberk > 0. Then, the nonlinearity can be represented as a circularobaion and
evaluated effectively with the FFT. Also, we found that thebdity of the numerical integration
scheme suggested in [4] can be improved significantly byutating the contribution from the
linear terms in (1) analytically. Thus, the linear terms, ithe source of physical instability, are
tackled exactly and only the nonlinear ones, with the duigpgiifect, are approximated.

Equations of the three-dimensional model [11] can be writteéerms of the spherical harmon-
ics expansion coefficients,, ,,,(t) of ®(0, ¢,t) as

Ad, . (t) ~ 1 - - ~
— = w(n, )P, . (t) + WNn’m(t) + Lo (t) + fram(t). 2

Here|n|, |m| < oo, t > 0, ﬁm(t) are the spherical harmonics coefficients of the properliesica
upstream perturbations of the unburnt gas velocity fieldl iaitial values of&)n,m(o) = 5%02,1
are given. The mathematical formulas for the linear respans, ¢), the spherical harmonics
coefficientsﬁmm(t), of the nonlinear term, anﬁnvm(t), of the artificial term, added in order to
prevent translations of the flame front as the whole objesparce, are available somewhere else.
A computational algorithm similar to [11], was used in thisrk. In addition, the stability
of the numerical integration scheme was improved by evigadhe contribution from the linear
terms analytically and the code was parallelized in ordepied up the computations and to use
larger data sets.



Computational results

Typical shapes of the flame fronts governed by (1) over large intervals are illustrated in
Fig. 1. The graph ofr(¢,t)— <r>]/<r> for t = 7.65 x 10* shows that the wrinkle amplitudes
are up to 10% of the averaged flame radius. The explicit fgreias not applied in this example.
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Figure 1: Evolution of a spherical flame governed by (1). Hedees ofr(¢, t) are in the left and
[r(¢,t)— <r>]/<r> fort = 7.65 x 10* are in the right. Positive values of the latter are in blue
and negative ones are in red= 0.8, f(¢,t) = 0.

Velocities of the planar and spherical flames are comparEgyir2. Power law approximations
(t — t.)* for the expansion rate of the spherical flame are also depibere. For the time interval
[2.2 x 103, 7.65 x 10%] the optimala ~ 0.34. For earlier timeg € [2.2 x 103,2.0 x 10%], the best
approximation is withn ~ 0.47, i.e. almostl /2. On the other hand, as time goes by, the expansion
rate slows down and fare [3.0 x 10%,7.65 x 10*] we gota ~ 0.23.
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Figure 2: Space averaged velocity for spherical (left) ame{space averaged velocity for planar
(right) flame fronts versus timeand flame sizd. respectively. Here = 0.8 and f(¢, t) = 0.

An example of evolution of a random three-dimensional pbgtion of a spherical flame is
illustrated in Fig. 3. Note, the space and time scales in itl) (@) are different. Their ratios are
Ary(2 — )
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respectively, see [4] and [11]. .




Figure 3: Evolution of a spherical flamex 40 (left) andt ~ 72 (right). Herey = 0.764.

Conclusions

Long time interval simulations of a simplified model of theparding spherical flames indi-
cated that their expansion rate slows down as the flame sixesgrThe saturation of the planar
flame propagation speed as their size grows was establisbe#iéence, a hypothesis of stabiliza-
tion of the spherical flame expansion rate over finite timeridl is suggested.

In order to verify the hypothesis, numerical simulationsaaihore sophisticated model of a
three-dimensional spherical expanding flame were indiatésing parallel techniques the evolu-
tion of such a flame has been successfully simulated to a sthge wrinkles appear and form a
well developed cellular structure.
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