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Introduction 
A century after it was postulated, the Chapman-Jouguet criterion has been exhaustively 

validated by analytical and experimental findings.  Yet, exactly why the CJ criterion is so 
successful in predicting the average propagation velocity of unsteady and multidimensional 
detonation waves is intriguing, as the CJ condition was formulated for steady, one-dimensional 
detonations.  This point is illustrated by gaseous detonations that propagate with highly irregular 
structure and detonations in multiphase and heterogeneous condensed phase systems.  Despite 
the enormous complexity of their structure, most of these detonation waves propagate with an 
average velocity within one percent of that predicted by the CJ criterion.  While it might be 
argued that, since a sufficiently large steady control volume can encompass the wave, the one-
dimensional relations must still dictate the average propagation of a detonation, this answer is 
not entirely satisfying. 

In order to address this issue by reducing it to an extreme case, it is of interest to consider a 
reactive wave propagating in an idealized heterogeneous system of discrete sources imbedded in 
an inert medium.  The propagation mechanism becomes one of “sympathetic detonation,” where 
the decaying blast from one source initiates the next.  This could be, for example, a suspension of 
primary explosive or bubbles of a sensitive gaseous explosive (acetylene-oxygen) in inert gas.  
Whether a wave of sympathetic detonation propagates, on average, at the equivalent CJ 
detonation velocity of the homogenized mixture is an outstanding question. 

The effect of discrete heat sources on flame propagation was considered by Goroshin et al. 
(1998), who treated the case of point-sources of heat that are activated at a specified temperature 
as heat diffuses outward from previously-activated sources.  Since the governing equation was 
the diffusion (heat) equation, the solution could be constructed analytically, using superposition 
of the solution for a single source (Green’s functions).  For the present problem, the task is 
considerably more difficult, since the mechanism of propagation will by via nonlinear shock 
waves (blast waves) generated by the discrete sources, which are not amenable to superposition.  
For a system governed by the Euler equations, it is likely that numerical solutions will be 
required.  This paper, however, strives to address the problem analytically as far as feasible.  
This is done by considering simplified models in which the blast waves to not interact, or even 
simpler model systems (Burgers equation) in which analytic solutions are possible. 

 
Zeroth Order Blast Wave Analysis 

Begin by considering a homogenous energetic medium with energy source density Eo [J/kg] 
(e.g., a cloud of fine explosive powder suspended in inert gas).  Now, imagine that the energy 
sources can be collected from the medium and collapsed onto thin sheets separated a distance L 
apart (see Fig. 1).  The energy per unit area of each sheet is now given by Eplanar = ρ L Eo [J/m2].  
If one source is triggered instantaneously, it will generate a blast wave that, for sufficiently 
strong blast, is governed by the similarity solution (Jones 1961) 
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Table 1. Comparison of CJ and Discrete Source 
Detonation 

 γ = 1.4 γ = 1.666 
Homogenous 

oCJ EU 38.1=
 

oCJ EU 89.1=
 

Discrete 
(zeroth order model) oAvg EU 96.0=

 
oAvg EU 29.1=

 

Here, B is a dimensionless parameter and η is an energy partition function (for symmetric blast 
waves propagating in both directions, η = 0.5).  

If we assume that as the blast encounters the second source, it is triggered instantaneously, 
then the second blast is coincident with the first.  If we further assume that there is no influence 
from one blast to the next, then the average propagation of this wave of “sympathetic detonation” 
will simply be the average time required for the first blast to span a distance L 
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Note that this velocity is independent of L:  the more widely spaced the sources are, the more 
energy accumulated in each source, and the stronger (and faster) the blast is from that source.  
Thus, the average propagation speed depends only on the average energy density of the 
equivalent homogenous system.  Since the interaction between sources has been neglected, this 
model can be considered a “zeroth order” analysis.  We can compare this propagation velocity to 
the CJ detonation velocity of the original, homogenous system with source energy density Eo: 

oCJ EU )1(2 2 −γ=  
The velocities are compared in Table 1.  Although the propagation velocities have the same 
functional dependence on Eo and are of the same order of magnitude, the sympathetic detonation 
in the discrete source system propagates about 
30% slower than CJ detonation velocity for this 
simplified model.  It is unclear if this velocity 
will increase as the ensemble of blast waves 
begins interacting.  To construct a “first order” 
model, it would be necessary to treat the 
unsteady flowfield in Fig. 2.  Rather than 
attempt this, we will instead consider a model 
conservation law system (the Burgers equation) 
that can be solved analytically. 

 
Exact Solutions Using Model Equation 

Using the one-dimensional scalar Burgers equation as a model for detonation phenomena 
was proposed by Fickett (1979) and independently by Majda (1981).  Here, we will follow the 
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a) homogeneous media with energy source density Eo 
 

b) discrete planar sources of energy 

Figure 1 Schematic showing how system of 
discrete energy sources is derived from equivalent 
homogenous system. 

Figure 2 Schematic of wave processes in 
propagation of a detonation in a discrete-source 
system. 



treatment of Fickett (1985a, 1985b), although the systems can be shown to be equivalent.  The 
analog system is based on the inviscid Burgers equation 
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Here, ρ is the conserved property and is analogous to density, p (the flux term) is the analog 
to pressure in the momentum equation, λ is a reaction progress variable (0 for unreacted, 1 for 
reacted), and q is the energy release.  A reaction rate can specify the dependence of λ on ρ, 
however, for comparison purposes, in the homogeneous CJ detonation the reaction can be taken 
as instantaneous behind the leading shock.  The shock or detonation propagation velocity is 
given by: 
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Assuming the strong shock limit (ρo = 0), the nonreacting shock and detonation velocities 
become 

ssU ρ=
2
1 , CJCJ qU ρ==  

For the discrete system, we can specify an array of delta function sources along an array.  The 
sources remain fixed as the shock passes (x corresponds to a Lagrangian coordinate, not a 
physical position in space).  In the homogeneous system, the source term is a source with respect 
to time, not space.  Thus, there is some question as to how to construct the equivalent source 
array in space.  The approach taken here is to make each source a source of area equal to the 
increase in area that the homogenous denotation would experience traveling the same distance L.  
This source is assumed to have a constant delay τc.  More realistic rate laws (Arrhenius) could be 
considered as well.  When a source is activated, a delta function is inserted as a triangular source 
(width w, height 

w
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= , where the width is taken in the limit w → 0) into the solution profile. 

Except for the instants in which the sources are activated, the solution of the discrete system 

is governed by the nonreactive Burgers equation, 0)
2

(
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+ρ xt . As this system has only one 

characteristic (a right-running wave of velocity ρ), the solution of a shock propagating with a 
linear gradient in ρ upstream and downstream can be constructed analytically using the Method 
of Characteristics.  Because the sources are inserted as triangular profiles, the solution consists of 
a “sawtooth” profile of shock waves and linear rarefaction waves for all time.    Shock-shock and 
shock-contact discontinuity mergings are treated analytically, and the solution is advanced until 
the next source is “deposited” in the solution. 

For comparison purposes, a case where sources of unit area (Asource = 1) were distributed 
along the x-axis at intervals two units apart (L = 2) is considered.  The sources have fixed delay 
of τc = 5 units.  The corresponding CJ detonation in this case propagates a unit velocity (UCJ = 
1).  A profile of the solution is shown in Fig. 3, and the instantaneous and average velocity of the 
front is shown in Fig. 4.  The average velocity was computed by simply dividing the distance the 
front had traveled divided by the time elapsed.  Note that the velocity of the wave appears to be 
converging to the CJ detonation of the equivalent homogenous source detonation. 
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Figure 5  x-t diagram of wave processes in system 
of discrete sources.  Solid lines indicate shocks, 
dashed lines contact surfaces, and “X” the time 
and location of source firings. 

If we examine the x-t diagram in Fig. 5 (note: this x-t diagram is constructed in a reference 
frame that is moving with the average velocity UCJ) of the case of a constant delay, we see that 
the trailing characteristics associated with prior sources appear to form an envelope that passes 
extremely close to the locus of new sources.   This feature of the limiting characteristics may be 
the discrete-source analog to the steady sonic plane of the CJ detonation in this system. 
 
Conclusions 

In conclusion, it may be speculated that any distribution of energy sources that are initiated in 
coherence with a shock wave will propagate, on average, at the Chapman-Jouguet speed of the 
corresponding homogenized medium.  This hypothesis, if proven, would provide an alternative 
and perhaps more satisfactory explanation for what experimentally observed detonations exhibit 
such excellent agreement with the CJ criterion, particular in highly irregular or heterogeneous 
detonations. 
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Figure 3  Solution profiles of system with sources 
(Asource = 1) spaced L = 2, with a constant τc = 5 
delay. 

Figure 4  Velocity history of system with sources 
(Asource = 1) spaced L = 2, with a constant τc = 5 
delay. 
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