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Introduction

In the following we study the evolution of an edge-flame in an oscillatory, symmetric non-
premixed counterflow. An edge-flame can be thought of as a two-dimensional transition be-
tween any two permissible states for a particular set of flame parameters (Buckmaster 2002).
The most common method of constructing edge-flames is to establish a one-dimensional flame
in a counterflow configuration for which two different stable solutions are admissible and then
seek a two-dimensional structure that can serve as a transition between these two solutions.
The dynamics of edge-flames in unsteady flows are of particular interest in the study of
turbulent combustion (Kessler et al. 2005), where the turbulent flow continuously tears and
disrupts the flame sheet, continuously forming edge-flames. In order to understand how
edge-flames may respond to an unsteady flow, we will study the response of a non-premixed
edge flame to an unsteady straining flow in a symmetric counterflow configuration. Earlier
work that examines the effect of unsteady straining flows on 1-dimensional flames (premixed
and non-premixed) can be found (McIntosh et al. 2001; Sung and Law 2000; Egolfopoulos
2000; Huang et al. 1998; Echekki and Chen 1996), while a 2-D study of edge-flames in an
oscillatory premixed counterflow has been presented (Kessler et al. 2005).

The edge-flame configuration

Apart from the fact that the flow field is unsteady, the formulation is that of Short et al.
(2001). Assuming a 1-step Arrhenius kinetic model and a constant density approximation,
the equations to be solved in their non-dimensional form are then

X, = —uX, + Lex (Xop + X12) — ax Yoo DXYe T,
Y, = —uY, + Ley' (Yoo + V) — ay XooDXYe T, (1)
,I;t - _UTw + T:c:c + Tzz + qDYei%a

where the magnitude of the temporally oscillating straining flow is determined from
u=—z(l — Asinwt). (2)

Here T is the temperature, Y is the mass fraction of fuel, X is the mass fraction of oxidizer,
q is the nondimensional heat release rate, # is the nondimensional activation energy, D is the
Damkohler number, and axY,, and ay X, are the stoichiometric coefficients. The boundary
conditions are:

T—-T,Y -1,X—=0asz— +o0; T —=T5Y —0,X —1asz— —o0; (3)
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T, Y, X,— 0as|z]| = cc. (4)

The first and second of these, (3), specify the cold supply conditions on the fuel and oxidizer
supply side. Suitable initial conditions lead to edge-flame solutions, transitions between
strong burning as z — oo and a quenched state (T =T, X =1,Y = 1) as z = —o0, and
are established in the usual way (Short et al. 2001). In this study we examine the overall
reaction,

H2+02/2—>H20 (5)

We will assume that the oxidizer stream is air, and thus X, = 0.22, while Y, = 0.01 repre-
senting a fuel supply stream consisting of 14% Hs diluted in nitrogen gas. The stoichiometric
ratio for the supply streams is then axY,/ay X, = 0.36. For the calculations presented
herein, we take ¢ = 1.2, T,, = 0.2, and # = 8.0. If T, = 0.2 is equivalent to 300K, then a
flame temperature of 7" = 1.0 would correspond to a dimensional temperature of 1500K. The
Lewis numbers of the fuel and oxidizer are Ley = 0.3 and Lex = 1.0, respectively. We also
consider a binary reaction in which the Lewis numbers of the fuel and oxidizer are both equal
to unity as are oY and oy Xs. This model flame will help to accentuate the role of the
Lewis number in edge-flame instabilities. This set of equations is solved using fourth-order
finite differencing in space, and a high-order Runge-Kutta time integration technique. We
will present results in terms of a scaled Damkohler number,

D = D§*exp(6/T,) (6)
where T, is the adiabatic flame temperature taken to be 0.6 in these calculations.

Results
Le=0.3

We begin by examining how the range of D for which it is possible for cellular edge-flame
instabilities to exist is affected by the presence of the unsteady forcing. It was found that
in the case of a steady counterflow (Short et al. 2001), cellular structures form when D lies
in the interval Dy < D < D¢ where D ~ 0.0046 and D¢ = 0.0049. In the presence of an
unsteady straining flow, this range of D is much broader. Figure 1 shows a series of plots
in the forcing flow amplitude A and frequency w plane for various D that identify cellular
instability boundaries. The term extinguished refers to the dynamic failure of the trailing
1-D flame and subsequent failure of the edge-flame itself, while propagating flame refers to
an edge-flame trailing a stable one-dimensional configuration. It is clear from figure 1 that
cellular edge-flame structures can persist for D as large as 0.0065. The nature of the cellular
instability observed in the presence of the time-periodic straining field is sensitive to the
frequency and amplitude of the forcing. Two types are shown in figs. 2 and 3. Figure 2
shows a time sequence of temperature contours within the domain for D = 0.005 forced at
the frequency w = 0.5. A flame-string is formed initially (Buckmaster 1992) that stretches,
splits into two flame strings, which drift but do not seem to be able to split again within the
finite domain. Figure 3 shows a sequence of temperature contours for D = 0.0065 forced with
the frequency, w = 1. In this example, the flame string dynmaics are similar to the previous
case for the six time frames. Subsequently, both flame strings split to form a warp of four
flame strings reminiscent of the cellular structures found in Short et al. (2001). Note that the
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Figure 1: Stability Boundaries for (from left to right) D =0.0047, 0.0050, 0.0058, 0.0065

values of D used in figures 2 and 3 correspond to a D for which stable edge-flame solutions
exist for the steady counterflow configuration. The existence of sublimit flame strings for
D < D, were noted in Short et al. (2001) for the analagous steady counterflow configuration.
In this work, we note the dynamic behavior of these flame strings to the unsteady counterflow.
Contours of the flame temperature for a representative flame string configuration are given
in figure 4. The response at this D in the steady counterflow configuration is a set of three
stationary flame strings. In this case, however, we notice that the two flame strings located
nearest to the boundary at z = 20 extinguish leaving behind a single stationary flame string.
Other responses can be obtained by varying A and will be discussed more extensively during
the oral presentation.

In Short et al. (2001), it was noted that in a steady counterflow, the amount of fuel
available in the supply stream plays a role in whether cellular structures can form. While
finding various examples of cellular structures for o, Y, = 0.5 and 0.75, no such examples
were found for .Y, = 1.0 when the counterflow is steady. We present an example of such a
cellular structure formed in response to unsteady focing with A = 0.9 and w = 5.0 in figure
D.

We now turn our attention to values of D sufficiently large such that the trailing 1-D flame
persists regardless of the values of A and w. It has been well documented that edge-flames
travel at a well-defined speed dependent on D for the steady counterflow configuration. We
wish to examine the response of the mean edge speed to the frequency and amplitude of
the forcing in such cases. We characterize the position of the edge flame as the location in
the x-z plane of the maximimum reaction rate. This quantity is charted with time for the
various A, w combinations tested. Due to the symmetric nature of the sinusoidal forcing
function, the location of the x-coordinate of the reaction rate remains essentially constant
with time, so we present the variation of the z-coordinate as a function of time. It is clear
from Figure 6 that both A and w affect the mean motion of the edge flame for D = 0.0090.
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Figure 2: Temperature contours in the (z — z) plane for D = .0050, A = 0.5, Ley = .3,
w = 0.5; contour levels .2,1.2(.1). The times for the panels are ¢ = 0 to ¢ = 64 incremented
by 8. Panels ordered from left to right.
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Figure 3: Temperature contours in the (z, ) plane for D = .0065, A = 0.9, Ley = .3, w = 1;
contour levels .2,1.2(.1). The panels are ordered as in Figure 2.

4E 4
N3 E
of E
Y E
—af E
-20 —10 —10 o 10 20
= | = | = |
2F 4 2F 3 2F E
ofF 4 of 4 ofF E
—2F 4 -2F 3 —2F E
—aF 4 —4F 3 —af E
—20 —10 o 10 20 —20 —10 o 10 20 —20 —10 o 10 20
4 4 4F E
oF ERN3 ]
of E E
oF e E
—afF —f 74; é
—20 —10 o 10 20 —20 —10 o 10 20

Figure 4: Temperature contours in the (z, ) plane for D = .00325, A = 0.25, Ley = .3,
w = 1; contour levels .2,1.4(.1). The times for the panels are ¢ = 0 to ¢ = 28 incremented by
4. The panels are ordered as in Figure 2.
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Figure 5: Temperature contours in the (z,z) plane for D = .055, A = 0.9, Ley = .3,
w =5 a,Yyx = 1.0; contour levels .2,1.2(.1). The times for the panels are ¢ = 0 to t = 48
incremented by 6. The panels are ordered as in Figure 2.
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Figure 6: z-coordinate of Maximum Reaction Rate in Domain as a Function of Time for
D = 0.0090, Ley = 0.3, a.) w = 0.5, A = 0.1 (dotted), A = 0.5 (dashed), A = 1.0 (solid).
b). A=1.0, w = 0.5 (dotted), w = 1.0 (dashed), w = 5.0 (solid).
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Figure 7: Boundary Between Propagating and Retreating Edge-Flames as a function of the
Amplitude of Forcing and the Damkohler number for w = 0.5 (solid) and w = 5.0 (dotted)
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Figure 8: z-coordinate of Maximum Reaction Rate in Domain as a Function of Time for
D =0.750, Ley = 1.0, a.) A= 0.5, w = 0.5 (dotted), w = 1.0 (dashed), w = 5.0 (solid). b).
w="5.0, A= 0.1 (dotted), A = 0.5 (dashed), A = 1.0 (solid).

Le=1.0

Flames with equal heat and mass diffusivities are more robust than their small-Le counter-
parts. For this reason, we do not find the formation of cellular structures for these types of
flames regardless of whether the underlying counterflow is steady or oscillatory. Instead, we
focus on characterizing the response of the mean edge speed to variations in the amplitude
and frequency of oscillation of the time-varying counterflow. For Le = 1.0, edge flames can
either propagate into the fresh mixture as ignition fronts or retreat back into the burnt gases
as failure waves. There exists a value of D, say D,, for which the edge is stationary. Values
of D < D, result in a failure wave while D > D, generates an ignition front. In figure 7,
we show that the value of D, depends on both A and w. We also will discuss the role these
parameters play in determining the mean edge speed for both a propagating and retreating
flame. An example for a retreating edge flame D = 0.75 is shown in figure 8. Also, we have
found that for sufficiently large w, the edge flame can persist even when the flame experiences
strain larger than the 1-D quenching value for a significant portion of the forcing cycle. This
will be discussed in more detail during the presentation of this work.
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