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Summary

The present investigation describes new results addressing the validity of
Damkohler’s second hypothesis in parallel small scale flows. Two main con-
tributions have been made. The first is analytical based on matched asymp-
totics, and leads to a formula for the effective speed of a premixed flame in
the presence of an oscillatory parallel flow, valid when the flow scale is much
smaller than the laminar flame thickness. The second contribution, which is
numerical, provides a significant set of two-dimensional calculations aimed at
assessing the range of validity of the asymptotic findings. The calculations
are based on a finite-volume multigrid approach and account in particular
for volumetric heat-loss and differential diffusion effects. A good agreement
between the numerics and asymptotics is found in all cases, both for steady
and oscillatory flows, at least in the expected range of validity of the asymp-
totics. Additional related aspects such as the difference in the response of
thin and thick flames to the combined effect of heat-loss and fluid flow are
also discussed. It is found for example that the sensitivity of thick flames
to volumetric heat-loss is negligibly affected by the flow intensity, in marked
contrast to the sensitivity of thin flames. Interestingly, thin flames are found
to be more resistant to heat-loss when a flow is present, even for unit Lewis
number; this ceases to be the case, however, when the Lewis number is large
enough.

Introduction

According to Damkohler’s second hypothesis in turbulent combustion, the
small scales of the flow-field do not cause any significant flame wrinkling
but do change the flame structure by enhancing the diffusive processes. An
original analytical contribution aimed at testing this hypothesis was carried



out in [1] in the framework of prescribed steady parallel flows. Its main result
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valid for small values of the scale ¢ of the flow u. Here ¢ and u are measured
against the thickness 6; and speed S of the adiabatic planar flame. Urp
and Uy represent the effective flame speed and the planar laminar flame
speed, also measured with S7. In the absence of heat losses Uy = 1, but
more generally Uy is the larger root of U2InU, = —k, where x represent
the intensity of heat-loss . In this equation the argument of u must lie in
[0,1] and its spatial mean must be equal to zero, which is always possible
by an appropriate choice of the origin and scale on the transverse axis and
of the reference frame. The formula describes the increase in the effective
flame speed Ur which is seen to depend quadratically on both the scale and
intensity of the flow while being independent of the Lewis number. It is
useful to extend this result to more realistic situations, e.g. by accounting
for flow unsteadiness and for more complex flows. As a step towards this goal,
the present work generalises the analytical formula to time-periodic parallel
flows. It provides also a numerical assessment of the range of validity of
the analytical findings, both for steady and unsteady flows, and takes into
account heat-loss and preferential diffusion effects.

Asymptotic analysis

The analysis is carried out using the asymptotic limit of small flow scale
¢ — 0 and large Zeldovich number 3 (with 37! < /), and assuming the
parallel periodic flow u(y,t) to have a zero spatial mean in an appropriately
chosen frame of reference.

We simply record the main finding for the effective propagation speed Ur:
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with Uy = 1 in the adiabatic equidiffusional case, but more generally U In Uy =
—k in presence weak heat-losses and preferential diffusion effects. The valid-
ity of the derivation in term of the frequency of the oscillatory flow will be
discussed.



Computations and comparison with asymptotics

An extensive set of numerical calculations has been carried out, mainly
in order to assess the validity of the asymptotic findings, both for time-
independent and oscillatory flows. A finite volume discretisation combined
with an algebraic multigrid solver has been used along with a non-uniform
grid.

For time-independent flows, the following non-dimensional form is adopted:

Y
u= Acos —.
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Here A is the flow amplitude (measured with Sp) and ¢ the flow scale (mea-
sured with 7). For these flows, the asymptotic formula predicts the result
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against which the numerics are compared.
For time-dependent situations, the following harmonic form is adopted:
27t s
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where 7 is the time-period measured against 07,/S;. The corresponding
asymptotic prediction is
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and is compared to the numerical results.

For sake of illustration for the time-dependent case, shown in Fig. 1,
corresponding to / = 1, A = 2 and 7 = 1 are the instantaneous amplitude,
A = Acos2nt/7, and the total burning rate {2 versus time ¢, after an initial
transient. From the plot, Uy = €0, the time average of €2, can be extracted
and is found to be approximately equal to 0.92 in this case. Repeating the
calculation for several values of ¢ and extracting (2 generates Fig. 2, where
Ur is plotted versus ¢ along with the curve based on the asymptotics.

Conclusion

In this investigation, two contributions have been made. Firstly, we have
derived an analytical formula for the effective flame speed in the presence
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Figure 1: Instantaneous amplitude A (solid line) and total burning rate €
(dashed line) versus time ¢.
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Figure 2: Ur versus ¢ predicted by asymptotics (solid line) and numerics
(dashed line).

of a prescribed, oscillating, parallel flow, whose scale is small. Secondly,
we have carried out a large number of numerical calculations as a systematic
test of the asymptotic findings for both stationary and time-dependent flows.
These accounted for the effects of volumetric heat-loss as well as differential
diffusion. Additional aspects, such as the difference in the response of thin
and thick flames to heat-loss in the presence of a flow, were also discussed.
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