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Introduction

It has been demonstrated (Teerling, MclIntosh, Brindley and Tam 2003) that oscillatory pressure
disturbances can cause a rippled flame to have a strongly increased mass burning rate as
illustrated in Fig. 1. By numerically modelling the premixed flame using single one step
Arrhenius kinetics and using the flux corrected transport algorithm LCPFCT developed by Oran
and coworkers at the US Naval research Laboratory at Washington (Oran and Boris 2001), it has
been possible to track the flame as it undergoes the Rayleigh-Taylor instability for the initial part
of the cycle of a harmonic
pressure wave imposed on the
flame, followed by the flame
returning close to its original
shape when the pressure
gradient is in the opposite
direction. However it does not
come back to exactly the same
shape, since vorticity has been
created due to the baroclinic
terms. As the cycle of pressure
/ e o . . wave fluctuations is followed,
L 1 the flame becomes more and
0 . . I . more distorted. The results of

) tms) this work with Lewis number at

_ . _ . unity are summarised in Fig. 2
Fig. 1 Net mass burning flux, normalized per unit surface of . ;
; , . ) o which shows the normalised
unperturbed flame, as a function of time for two-dimensional (solid line) . .
and for one-dimensional flame (dashed line) Ap = 0.05 bar; /= 1000 time-averaged mass burning
Hz); flux plotted against frequency

for three wavenumbers.
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The effect of Lewis number

In this paper we now consider the effect of Lewis number on these results, knowing that we will
be likely to encounter the effect of the thermal-diffusion instability at low Lewis numbers.

Initially we considered a flame that had the same properties as before, but with the Lewis
number set to 2.0. This represents a lean, heavy-fuel flame or a rich, light-fuel flame. For this
Lewis number, an initial burning velocity, Sy of 0.46 m/s was obtained. The evolution of the
non-dimensional mass burning flux m/m, was again evaluated against time, together with two
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Fig. 2 Normalized time-averaged mass burning flux 71, /m, versus

frequency for three wavenumbers: k= 0.056 (open triangles); 0.077 (black
circles) and 0.101 (crosses); Ap 0 05 bar.
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Fig. 3 Contour plots of reaction rate for same case (f = 1000 Hz;
Ap = 0.05 bar; k= 0.079; Le = 2.0) for ¢t = 0.16, 0.32, 0.47, 0.63, 0.79,
0.95, 1.11, 1.27, 1.42, 1.58, 1.74, 1.90, 2.05, 2.20, 2.35, 2.50, 2.65, 2.81,
2.96, 3.11, 3.26, 3.42, 3.58, 3.72, 3.88, 4.03, 4.19, 4.35, 4.50 ms after the
pressure was imposed.



similar flames of a different Lewis number (Le = 1.0 and 0.5). The frequency and amplitude of
the imposed pressure wave were set to /= 1 kHz and Ap = 0.05 bar. The results showed that the
evolution of the three different flames was quite similar, albeit near the maxima in the dynamic
equilibrium phase, the gradients near the maxima in mass burning flux m became sharper for
increasing Lewis number. However the total mass burnt M was quite similar as were the values

of the average new mass burning m, and the delay time #, .

Holes in flame front

Despite the fact that the mass burning flux did not differ much when the Lewis number was
dropped, the wrinkled flame front developed a very different shape from that seen for the case
Le = 1.0. To illustrate this, a sequence of reaction rate contours is plotted in Fig. 3. These
contours showed that the reaction along the wrinkling was initially quite uniform, but at later
stages the reaction took place mainly in those parts of the wrinkled flame that were pointing
towards the burnt gases. The difference in thickness of the reaction zone along the flame front
grew with every cycle and eventually the flame extinguished locally in areas where the flame
finger shape pointed towards the unburnt region.

This phenomenon can be explained by the fact that for a low value of the Lewis number, the heat
diffusivity is greater than the mass diffusivity. Because of this imbalance, there is not enough
mass supplied to the flame front to sustain the initial reaction rate. As a consequence of this the
temperature dropped. Due to the wrinkled shape of the flame front, areas where the burnt
mixture was penetrating the unburnt gases, were most affected.

As a result of local quenching, the amount of released heat dropped, and consequently less mass
was added to the unburnt gases. This drop in the temperature locally yields a different shape of
the temperature profile, and thus clearly shows differences in flame thicknesses along the flame.

Lewis number Le = 0.5

We now consider the case Lewis number Le = 0.5, which could either represent the case of a
. | . | . | . | . premixed flame using a lean, light-
3 ; . - weight fuel such as hydrogen, or a
! 5 rich, relatively heavy fuel such as

butane. Keeping all the other
parameters the same as in the
aforementioned "default" case, this
parameter setting yielded a burning
velocity Sy = 0.34 ms™. The
evolution of the mass burning flux
versus time for this case is plotted
in Fig. 4, together with time
sequences for the case of a flame
with Le = 1.0 and 2.0; imposed on
these flames was the "default"
pressure wave (i.e. f= 1kHz; Ap =
0.05 bar ). A similar plot is given
0—— e ' ' ' in Fig. 5, but in this plot each of
t (ms) the sequences in mass burning flux

Fig. 4 Evolution of the mass burning flux 7 for three flames with m 1is scaled with its associated

different Lewis number: Le = 1.0 (solid line), Le = 0.5 (dotted line) initial value of the mass burning
and Le = 2.0 (dashed line).
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flux m,, yielding plots of the non-dimensional mass burning flux. Because the value of m, was

different for these three flames, the plot shows that the relative increase in mass burning flux
becomes greater as the Lewis number decreases.

This behaviour is also reflected in
the values obtained for the ratio
that indicates the time-averaged
increase in mass burning flux,
m, [m, . These values are shown in

Table 1. The table also shows the
values obtained for the delay time
t4 and the amplitude of the mass
burning flux Am .

mimy

Conclusions

There is no doubt that the effect of
Lewis number is marked when a
rippled flame encounters an
oscillating pressure disturbance. In
particular this work shows that
0 l 2y 4 5 there is an important enhancement
of mass burning rate growth for
Lewis numbers less than unity.

Fig. 5 Evolution of the nondimensionalised mass burning flux
(m / my, ) for three flames with different Lewis number: Le = 1.0
(solid line), Le = 0.5 (dotted line) and Le = 2.0 (dashed line)

f Ap k ta Ma Am ma/my  Le
(Hz) (bar) (ms) (kg/s m?) (kg/s m?)
1000 0.05 0.079 1.64 1.68 1.19 4.18 0.5
1000 0.05 0.079 1.60 1.55 1.06 3.27 1.0
1000 0.05 0.079 1.75 1.54 1.12 2.83 2.0

Table 1 Time-averaged increase in mass burning flux, 71, / m, , the delay time #4 and

the amplitude of the mass burning flux Am .
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