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Introduction 
 
Fuel cell for automobile industry has been developed recently and the safety issue of the high 
pressure hydrogen emerges from behind the application to the safety of high pressure hydrogen 
tanks (Hayashi 2004). We are concerned about the behavior of the hydrogen jet if there is a leak 
in the tank and whether the high pressure hydrogen jet can be ignited by itself or not. However, 
little attention has been paid to this topic. Some numerical studies on the ignition of the 
non-premixed counter-flowing hydrogen and hot air streams were performed (Balakrishnan et al. 
1995; Kreutz and Law 1996; Mastorakos et al. 1997; Uejima et al. 1998); however, the pressure 
was one atmosphere and the maximum jet velocity was 50 m s-1. For a high pressure hydrogen 
tank for fuel cell purposes, its pressure is more than 10 MPa and a typical speed of a choked jet 
is about 1,300 m s-1. Hence, their results do not apply to the cases of the fuel cell and high 
pressure hydrogen tanks directly.  
 
In this paper, we conduct direct numerical simulation to investigate the behavior of the high 
pressure hydrogen jet. Two-dimensional axisymmetric Euler equations and detailed chemical 
mechanisms are used to simulate the hydrogen ignition and combustion. A small hole with a 
diameter of 1 mm is assumed to be opened on the wall of a tank suddenly and a choked 
hydrogen jet is injected into the air. The pressure of the tank is taken to be 10, 40 and 70 MPa, 
respectively.  
 
Numerical Setup and Method 
 
Two-dimensional axisymmetric Euler equations and detailed chemical reaction mechanisms are 
employed to simulate the behavior of the hydrogen jet at the early stage of the leakage. The 
detailed chemical reaction mechanism is constituted by 9 species (H2, O2, O, H, OH, HO2, H2O2, 
H2O, and N2) and 18 elementary reactions (Petersen and Hanson 1998). A Harten-Yee type 
Non-MUSCL TVD scheme is used for the convection term integration and the time 
discretization is implemented by a Strang-type fractional step method. Especially, chemical 
reactions are treated by a point implicit way to avoid stiffness.  
 
Stagnation pressures of hydrogen in the tank are 10, 40 and 70 MPa with a stagnation 
temperature of 300 K. A rectangular computational domain is selected, where the left boundary 
condition is a solid wall and the other three boundary conditions are free stream conditions. A 
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small hole with a diameter of 1mm is located at the center of the left wall. The jet is choked at 
the hole and the Mach number is unity. The initial ambience is air at 0.1 MPa, 300 K, and at rest.  
 
A uniform grid size of dx = dy =10 µm is accepted in the simulation because our grid size 
resolution study before the simulation shows that the coarse grid size gives lower temperature 
prediction. It is necessary and reasonable to use such small grid size to simulate high 
temperature hydrogen combustion. 
 
Results and Discussions 
 
The case of 10 MPa tank pressure 
In this case, the pressure of the hydrogen tank is 10 MPa. Figure 1 shows the temperature 
contours at 10 µs. We can see from Fig. 1 that the maximum temperature is about 450 K. The 
high temperature region appears at the jet front. No OH molecule is found in the results of this 
case, which means no combustion occurs without any ignition source.   

 
Figure 1. Temperature contours at 10 µs in 10 MPa tank pressure case 

 
 
The case of 40 MPa tank pressure 
In this case, the pressure of the hydrogen tank is 40 MPa. The temperature contours at 10 µs are 
plotted in Fig. 2. We can see that the maximum temperature at the contact surface region is up to 
1,750 K at 10 µs. The high temperature region appears not at the shock wave front but at the 
contact surface region because hydrogen mixes with oxygen and combustion takes place there. 
Fig. 3 shows the OH mass fraction at 10 µs. A large number of OH molecules are found at the 
contact surface region (see Fig. 3), which means the local combustion of hydrogen-air mixture 
occurs there.  
 
The shock wave produced by the hydrogen jet itself is simulated in order to study the 
mechanism of local combustion. The temperature contours are presented in Fig. 4. Fig. 4 shows 
that the maximum temperature at the shock wave front at 2 µs is higher than 1,400 K. This result 
demonstrates that the combustion at the contact surface is caused by the high temperature 
behind the shock wave.  
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However, the hydrogen jet can not be ignited by the local combustion at the contact surface 
region. As the jet propagates and expands further away from the tank, the temperature at the 
contact surface decreases quickly and the local combustion is quenched. Figure 5 shows the 
temperature contours at 100 µs. The temperature at the contact surface drops to under 1,000 K at 
100 µs. This demonstrates that the local combustion is extinguished and it can not lead to a 
hydrogen flame only by itself without any ignition source. The reason will be discussed in the 
next subsection. 
 

 
Figure 2. Temperature contours at 10 µs in 40 MPa tank pressure case 

 
 

 
 

Figure 3. OH mass fraction contours at 10 µs in 40 MPa tank pressure case 
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Figure 4. Temperature contours of shock wave at 2 µs in 40 MPa tank pressure case 

 

 
Figure 5. Temperature contours at 100 µs in 40 MPa tank pressure case 

 
                               
The case of 70 MPa tank pressure 
In this case, the behavior of the hydrogen jet from a 70 MPa tank is simulated. The local 
combustion at the contact surface region also occurs at the early stage of the leakage like 40 
MPa case (see Fig. 6). The maximum temperature is higher and the distance from the wall is 
longer than that in 40 MPa case because the shock wave is stronger. However, this stronger jet 
can not be ignited only by itself and the local combustion also dies out 100 µs later. Figure 7 
shows that the maximum temperature decreases to 1,150 K and the local combustion almost 
disappears at 110 µs. The nonpremixed flame does not take place in this case.  
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Figure 6. Temperature contours at 10 µs in 70 MPa tank pressure case 

 
 

 
Figure 7. Temperature contours at 110 µs in 70 MPa tank pressure case 

 
 

Two mechanisms of local combustion quenching are discussed here on the basis of the 
simulation results. The first mechanism is that why the local combustion can not develop into a 
nonpremixed flame in the time period of 100 µs. The second is that why the local combustion is 
quenched 100 µs later. The main reason for the first question is that the local combustion occurs 
at the tip region of the contact surface to move together with the jet and its position is always in 
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front of the hydrogen gas. It can not form a steady ignition source. Hydrogen and oxygen mixes 
with each other at the side boundaries and the temperature of the mixture is very low because of 
the over-expansion. The position of the mixture is always behind the high temperature local 
combustion products. Therefore, the local combustion can not be held to ignite the hydrogen-air 
mixture.  
      
The main reason for the second question is that H2O is produced by the local combustion and its 
amount increases at the contact surface continuously. Figure 8 shows the mass fraction of H2O 
and hydrogen, where the colors represent the mass fraction of hydrogen and the black lines 
represent H2O. From Fig. 8 we can find that H2O stays between hydrogen and air and 
propagates together with the jet. It prevents hydrogen and air from well mixing and puts the 
local combustion out.  

 

 
 

Figure 8. Mass fraction contours of H2O and H2 at 60 µs in 70 MPa tank pressure case 
(the colors represent H2 and the black lines represent H2O) 

 
 
Resolution study 
Resolution study is conducted before the direct simulation. Two grid sizes of 10 and 100 µm are 
studied and the results are presented in Figs. 9 and 10. This study shows that the larger grid size 
influences the simulation results very much. No local combustion occurs if the 100 µm grid size 
is used. For combustion simulation, the grid size of 10 µm is fine enough. But the grid size of 
100µm is too coarse to simulate the hydrogen combustion.  
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Figure 9. Temperature contours at 50 µs using 10 µm grid size in 70 MPa tank pressure case 
 

 
 

Figure 10. Temperature contours at 50 µs using 100 µm grid size in 70 MPa tank pressure case 
 

 
Conclusions 
 
We investigate the behavior of a hydrogen jet coming into the air from 10, 40 and 70 MPa high 
pressure tanks by the direct simulation using two-dimensional axisymmetric Euler equations 
with the full chemical mechanism, where the detailed chemical mechanism contains 9 species 
and 18 elementary reactions. Especially, the uniform grid size of dx = dy = 10 µm is used 
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because our resolution study shows that the larger grid size influences the temperature at the jet 
front very much.  

(1) For 40 and 70 MPa tank pressure cases, the local combustion of hydrogen-air mixture 
at the contact surface region occurs at the early stage of hydrogen jet propagation. This local 
combustion is caused behind the shock wave induced by the high pressure hydrogen jet. The 
local combustion increases the temperature at the contact surface up to 2,000 K. But for 10 MPa 
case, the shock wave is not strong enough to ignite the local mixture. The maximum temperature 
for this case is about 450 K at the early stage.  

(2) However, the maximum temperature decreases to 1,000 K at 100 µs and the local 
combustion is quenched as the jet propagates and expands away from the tank. The main reason 
is that H2O produced by the local combustion stays between hydrogen and air and prevents them 
from well mixing. H2O puts the local combustion out.  

(3) The hydrogen jet itself can not become a nonpremixed flame either in 40 or 70 MPa 
cases although the local combustion occurs. The main reason is that the position of the local 
combustion is always in front of the mixture. It moves together with the jet and can not form a 
steady ignition source. Therefore, a hydrogen flame does not take place without any additional 
ignition source.  
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