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Introduction

The aim of this work is to describe the dynamics of the triple flames, or flame-edges, that
form after the local extinction by a vortex ring of a diffusion flame established between two
counterflowing gaseous fuel and air streams of the same density, a configuration sketched
in Figure 1. For sufficiently strong vortices, the flame will be locally quenched when the
instantaneous value χs = DT|∇Z|2s of the scalar dissipation rate at the stoichiometric
surface grows above a certain critical value, hereafter denoted as χs,e [1]. Here DT is the
thermal diffusitivity and Z is the mixture fraction.

The local extinction of the flame leads to the formation of flame holes (or annulus),
where both reactants mix without reaction. Such holes are separated from the diffusion
flame by flame-edges that can propagate in either direction—as ignition fronts or failure
waves—depending on the local flow conditions [2]. Thus, for values of the scalar dissipa-
tion rate smaller than a critical value, χs < χs,c, they propagate along the stoichiometric
surface towards the unburned mixture as ignition fronts (triple- or edge-flames with posi-
tive velocity, UF > 0), while for χs,c < χs < χs,e they behave as failure waves (edge-flames
with negative velocity, UF < 0) that recede away from the unburned mixture. The de-
tailed analysis of the scalar dissipation rate at the stoichiometric surface is therefore of
interest for the subsequent evolution of extinguished holes [3].

The present paper represents an extension of previous work done by the authors on
the unsteady response of reacting mixing layers (or diffusion flames) perturbed by vortices
[4]. The analysis, confined to the near-stagnation point region—where the strain rate of
the unperturbed velocity field, A0, is constant—is restricted to cases where the typical
vortex ring radius, r0, is large compared to both the size, δv, of the vorticity core and
the characteristic thickness, δm,0 = (DT/A0)

1/2, of the unperturbed mixing layer (see
Reference [4] for details). The dynamics of the flame-edges is modelled using previous
numerical results, where heat release effects are fully taken into account, which provide
the propagation velocity of triple- and edge-flames in methane-air mixing layers in terms
of the local Damköhler number, Da = 1/(χstL), defined here in terms of the local scalar
dissipation rate, χs, and the residence time, tL, in the preheat zone of the stoichiometric
premixed flame.
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Figure 1: Sketch of the distorted mixing layer perturbed by a vortex ring.

Formulation

After the initial stages of the interaction, the roll-up of the flame sheet around the vor-
tex introduces strong curvature effects and interactions between adjacent flame elements
which cannot be studied using boundary layer approximations of the kind performed in [4].
Thus, for an accurate description of the extinction process we must solve the complete
conservation equation for the mixture fraction

∂Z

∂τ
+ u · ∇Z =

1

Pe
∇2Z, (1)

written here in non-dimensional form using r0, A−1
0 and r0A0 as characteristic length,

time and velocity scales, respectively. In the above equation Pe = r2
0A0/DT is the Peclet

number of the unperturbed mixing layer, which is considered to be large but finite.
When the vortex Reynolds number is sufficiently large, Γ/ν � 1, the axisymmetric

velocity field associated with the vortex ring, of circulation Γ and core position rc(t) and
zc(t), can be added to the unperturbed straining field to obtain the instantaneous velocity
field u [4]. The nondimensional vortex strength Γ̃ = Γ/(2r2

0A0), which is the ratio of the
characteristic strain time A−1

0 to the characteristic turn-over time of the vortex r2
0/Γ,

assumed to be of order unity, emerges as the main parameter characterizing the velocity
field. Here, the vortex ring is assumed to propagate upwards to match the experimental
configurations found in the literature [5–7].

Equation (1) has to be solved with the boundary conditions Z = 0 in the oxidizer
stream, coming from η = −∞, and Z = 1 in the fuel stream, coming from η = +∞, using
as initial condition the unperturbed planar mixing layer solution. Then the flame sheet
is located at Z = Zs = 1/(S + 1), where S is the overall air-to-fuel stoichiometric ratio.

The diffusion flame will be locally quenched as soon as the instantaneous value of
the scalar dissipation rate χs exceeds its critical extinction value, χs,e [1]. Accordingly,
the ratio R = χs,e/χs,0 of the critical extinction value emerges as an additional non-
dimensional parameter which measures the robustness of the flame to flow perturbations,
indicating how far from extinction the flame is in the unperturbed condition.
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Figure 2: Left: velocity of a discrete flame element resulting from the superposition of the
convective velocity u, imposed by the flow, and the diffusive velocity ud, which combines
the effects of curvature and diffusion along the normal. Right: variation of the front
propagation velocity UF with the Damköhler number in a pure methane-air mixing layer.

The dynamics of the flame-edges that appear after the local extinction of the flame is
determined by their propagation velocity UF along the stoichiometric surface with respect
to the upstream flow, as well as on the velocity us of the stoichiometric surface relative
to the laboratory reference frame. As illustrated in the left plot of Figure 2, the evolution
of a point on the flame sheet is due to the combined effect of convection and diffusion [8]

us = u + ud = u− 1

Pe

∇2Z

|∇Z|
n = u− 1

Pe

[
k +

n · ∇(n · ∇Z)

|∇Z|

]
n, (2)

where u is the convective velocity of the perturbed velocity field, and ud is a diffusive
velocity representing the effects of the curvature k = ∇ · n and the diffusion along the
normal n = (∇Z/|∇Z|)s.

The propagation velocity of the flame front UF, measured with the planar stoichio-
metric flame velocity SL, is known to depend on the local Damköhler number Da of the
frozen mixing layer ahead of the triple flame. The ratio UF/SL depends also on the values
of the Lewis numbers, on the overall air-to-fuel stoichiometric ratio S, and on the amount
of heat release.

The dependence of UF/SL on Da can be obtained numerically as described in [9],
leading to the results shown in the right plot of Figure 2 for undiluted methane-air mix-
tures. For sufficiently large values of Da the velocity becomes weakly dependent on the
Damköhler number, growing to an asymptotic value for Da � 1, which, due to thermal
expansion effects in the flame front region, is larger than unity, typically of order 3.

Notice that for the case of strong vortices considered below, the convection velocity
imposed by the vortex is typically large compared to the propagation velocity of the
front along the stoichiometric surface, and therefore the exact definition of the curve
UF/SL = f(Da) is not critical as long as its shape is similar to that of Figure 2. In fact,
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we can anticipate that the results presented here will be applicable to other fuels not
strongly diluted, having values of γ close to that of methane.

After local flame extinction, two flame-edges appear at both sides of the extinguished
region. These flame-edges can be characterized by (i) its position xF(τ) on the stoichio-
metric surface, and (ii) its orientation ϑF along the surface. For flame-edges propagating
in the direction of the tangential vector t, the orientation is ϑF = +1, while for propa-
gations in the opposite direction ϑF = −1. Here t is defined by a 90◦ clockwise rotation
of the normal vector n. The evolution of each flame-edge is governed by the ordinary
differential equation

dxF

dτ
= us + ϑFũFt, (3)

where us is the velocity of the stoichiometric surface at xF given by (2) and

ũF =
UF

A0r0

=

(
SL

A0r0

)
UF

SL

(4)

denotes the front propagation velocity made nondimensional with A0r0. Notice that the
factor between brackets appearing in (4) can be rewritten as

SL

A0r0

=
DT/A0

r0δL

=
δ2
m,0

r0δL

=
Da

1/2
0

Pe1/2
=

Da1/2
e

Pe1/2
R1/2, (5)

where Dae is the Damköhler number at extinction, fixed for each thermochemical model.

Comparison with experiments

Numerical solutions to Equation (1) are obtained using a fourth degree finite difference
method with optimally distributed nodes [10]. A regularized version of the velocity field u
had to be used to overcome the singularities introduced by the potencial flow assumption.
Time integration of the resulting semidiscrete problem is accomplished by a classical fourth
order Runge-Kutta method. Spatial and temporal resolutions are chosen fine enough to
ensure at least three digits of accuracy. The solution provides the time evolution of the
flame sheet, the local value of the scalar dissipation rate χs, and the flame sheet velocity
us, which are then used to analyze the local extinction of the flame and the resulting
flame-edge dynamics.

Figure 3 shows the temporal evolution of a flame sheet, shown in red, on top of the
corresponding mixture fraction isocontours: dark gray stands for Z = 0 and light gray for
Z = 1. The values Pe = 47, Γ̃ = 20, and S = 0.7 of the nondimensional parameters have
been derived from the experimental conditions of Case 2 in [5]. A good agreement can be
observed between the present numerical results and the experimental visualizations given
in [5], demonstrating the validity of the assumed velocity field and the applicability of
Equation (1). In this case the strength of the vortex ring is not sufficient to trigger local
flame extinction, but it is large enough to form an ignited pocket that travels with the
vortex and burns completely in times of the order of the diffusion time r2

0/DT.
Figure 4 shows the temporal evolution of an annular extinction event. The values

Pe = 40, Γ̃ = 30, S = 0.77, and R = 14.5 of the nondimensional parameters have been
chosen to match the experimental conditions of Flame A in [6] or, equivalently, Flame E
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Figure 3: Flame sheet evolution in a flame/vortex interaction with Pe = 47, Γ̃ = 20,
S = 0.7, and R� 1. Parameter values derived from the experimental conditions of Case
2 in [5]. The flame sheet is shown in red and the circle marks the location of maximum
local scalar dissipation rate.
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Figure 4: Flame sheet evolution in a flame/vortex interaction with Pe = 40, Γ̃ = 30,
S = 0.77 and R = 14.5. Parameter values chosen to match the experimental conditions
of Flame A in [6] or Flame E in [7]. The flame sheet is shown in red, the region where
χs > χs,e is shown in blue, and the circle marks the location of maximum local scalar
dissipation rate.
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in [7]. The region where χs > χs,e is shown in blue and the location where the maximum
scalar dissipation rate χs is attained is marked by a filled circle. Again, a good agreement
is observed between the present results and the experiments, although later stages of the
interaction do not match the experimental observations due to the presence of a jet that
follows the (starting) vortex ring in the experimental configuration of [7]. The correct
prediction of the annular extinction phenomenon shows that the local flame extinction
can be triggered solely by an excess in the local scalar dissipation rate, whose maximum
value is in this case attained off the symmetry axis.

Conclusions

Despite the apparent simplicity of the model, the agreement with previously published
experimental results is remarkable and shows its potential to describe extinction and
reignition phenomena in unsteady non-premixed systems; it captures and clarifies many
of the parametric dependencies observed experimentally in non-premixed flame/vortex
interactions. The analysis proposed here provides a simple framework to study relevant
phenomena such as axial/annular extinction, reignition scenarios, flame-edge dynamics,
pocket formation, noise generation, etc. Further work is required to clarify the effect of
preferential diffusion and thermal expansion on the predicted results. Similar modelling
approaches could also be useful to investigate spray combustion phenomena.
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