Confined Burke-Schumann Flames with Small Stoichiometric
Mixture Fraction and Small Fuel Radius
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The Burke-Schumann limit of infinitely fast reaction rate [1, 2] is used to investigate laminar
diffusion flames formed when a fuel jet of radius €a, with € < 1, discharges into a coaxial air
stream confined by an outer duct of radius a. Turbulent flow conditions have been considered in
a number of classical studies, including that of Thring and Newby [3] for reacting flow and that
of Craya and Curtet [4] for nonreacting flow. Our study focuses on laminar flames corresponding
to moderately large values of the jet Reynolds number Re = [p,Ji/(7p2)]'/2, with J denoting
the momentum flux of the fuel jet, whose density and viscosity are represented by p, and y,,
respectively. The steady slender flows that form under such conditions can be described with
small relative errors of order Re~2 in the boundary-layer approximation, which was adopted in
earlier investigations of unconfined jet diffusion flames [5, 6]. The nonreacting confined flow was
recently addressed in [7]. The solution was seen to depend on a single parameter, the so-called
Craya-Curtet number C = (Jo/Ji)/?, where J, denotes the momentum flux of the coflow oxidizer
stream. For values of C' above a critical value C, the streamlines are seen to remain aligned with
the axis, while for C' < C. the entrainment demands of the jet cannot be satisfied, giving rise
to the appearance of a toroidal recirculating region. For the nonreacting case, the value of C,
depends only on the shape of the coflow velocity profile, giving, for instance, C. = (0.65,0.77) for
uniform and parabolic coflow, respectively.

This study extends our previous work [7] by considering the chemical reaction between the
inner fuel jet, where the fuel mass fraction is Yz, and the oxidizer coflow, where the oxygen mass
fraction is Y,,. An irreversible overall reaction

F + sO — (1 + s)Products + (g), (1)

is assumed, where s and ¢ represent, respectively, the mass of oxygen burnt and the amount of
heat released per unit mass of fuel consumed. When the diffusivities of both reactants are equal,
the mixture fraction Z emerges as a convenient scalar to compute the resulting flow field [2]. In
the Burke-Schumann limit of infinitely fast combustion the reactants cannot coexist in the first
approximation, and the flame, located where Z = Z; =Y, /(Yo, + sYr, ), separates an oxidizer
region for Z < Z; from a fuel region for Z > Z;. If the Lewis number of the reactants is unity and
heat losses to the confining duct are neglected, then the temperature field can be readily related
to Z according to T =1+~vZ/Zs for Z < Zsand T =1+~(1 - Z)/(1 — Z;) for Z > Z;, where T
is the temperature scaled with the initial temperature, T,, assumed to be equal for both streams,
and v = ¢Yr, /[, T,(1 + S)] is the dimensionless stoichiometric flame temperature increase, with
S = sYr, /Yo, and ¢, being the specific heat at constant pressure, assumed to be constant in the
following development.

The solution can be simplified when, as often occurs in applications, € and Z; are both small
quantities, while C remains of order unity. In that case, the velocity of the fuel jet is a factor
¢~! larger than that of the coflow, so that the fuel jet develops near the entrance like a free jet



discharging into a stagnant oxidizer atmosphere. The flame lies initially in the outer edge of the
annular mixing layer that grows from the orifice rim, which separates the fuel jet where Z = 1
from the outer oxidizer, where Z = 0. The thickness of this mixing layer increases with distance
to become of the order of the fuel jet radius at distances of order Re € a, where transverse mixing
starts to reduce significantly the value of Z at the axis. Mixing of the fuel jet with the coaxial air
stream continues downstream from this jet developing region, in a mixing region of characteristic
length of order Re a where Z is of order €, with a final asymptotic value Z = Z,, also of order €.
The flame lies in this mixing region when Z; ~ ¢, which emerges as the appropriate distinguished
limit in our analysis.

To describe the resulting flame it is convenient to use as scales those corresponding to the
region where the mixing between the fuel and oxidizer streams occurs across the whole confining
duct. Thus, we choose to scale the radial coordinate with a and the axial coordinate with the
characteristic length Re a, yielding the dimensionless coordinates r and z. In this mixing region,
the characteristic values of the axial and radial velocity components are u. = [J/(7a?p,)]*/? and
to/(poa), which can be used to define dimensionless velocity components, v and v, respectively,
while the difference of hydrostatic pressure from the entrance value is scaled with its characteristic
value p,u? to give p. Furthermore, it is convenient to define a normalized mixture fraction of order
unity by introducing the alternative variable z = Z/Z; as a replacement for Z. With this set of
rescaled variables, the boundary-layer equations for an upward-facing combustor become
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to be integrated with initial conditions
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£ =0, 0<r<e: u=¢ Uy z=2Z (5)
e<r<l: u=CU,, 2z=0

and with boundary conditions

r=0: Ou/dr=v=0z/0r=0
z >0, {r:l: u=v=0z/0r=0 (6)

Here, Pr = 0.72 represents the constant Prandtl number for the gas mixture and Ug(r/e) and
Uo(r), are shape functions of order unity for the initial velocity distributions at z =0 (e.g., Ur = 1
and Uy = (1 — 52)_1/ 2 when the velocity profiles are uniform). Buoyancy is accounted for in the
formulation through the dimensionless gravity G = (gRea)/u2, the inverse of the relevant Froude
number, which enters as a factor in (3), leading to the acceleration of the light fluid with 7' > 1.
To simplify the formulation, the density and viscosity are assumed to be independent of the
mixture composition. Their values, conveniently scaled with their initial values p, and p,, are

given by
p=T"' and p=1°, (7)

where the former corresponds to the ideal gas law and the latter is a presumed power-law for the
temperature dependence of the viscosity, with the exponent ¢ = 0.7 being used in the integrations
below.



In the initial region of jet development, corresponding to z ~ ¢ and r ~ ¢, the variables u and
z are of order e 7! ~ Z! >> 1. Their values continuously decrease as the jet develops downstream,
yielding values of order unity in the mixing region corresponding to distances z ~ O(1), where
the flame admits a simplified description depending on a reduced number of parameters. The first
simplification concerns the temperature on the fuel side of the flame, which becomes approximately
equal to its adiabatic value, so that

T=14+~vz for z<1 (8)
T=1+~v for z>1.

gives with errors of order Z; the temperature field in terms of the rescaled mixture fraction.
Furthermore, the initial conditions (5) can be replaced in the integrations with the profiles of u
and z that emerge in the intermediate region corresponding to ¢ < = < 1, where the jet radius
is already much larger than the discharge orifice but still much smaller that the confining duct
(e € 7 ~ z < 1). In this intermediate region, the velocity and the mixture fraction are of
order e > u > 1 and Z;! > z > 1, respectively. Since the flame lies far from the axis,
the temperature across the jet corresponds according to (8) to the adiabatic flame temperature
T =1+, and consequently the velocity
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is obtained by adding the Schlichting self-similar solution [8] with p = (14++)~! and u = (1 +)°
to the unperturbed coflow profile given in (5). Similarly, Squire solution [9]
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describes the mixture-fraction field. In 10, 1, = fj 2T 9 pruzdr = Z;1 I 2re " Udr represents
the constant flux of mixture fraction, which can be written in terms of the global equivalence ratio
of the coflow system ¢ = (S [ 27”6*1Upd7')/(f£1 2rCUdr) = m,/(Cgo) , where go = fol 2rUqdr
(e.g., go = 1 for uniform coflow). With the selected scaling, the rescaled mixture fraction z
evolves in the mixing region to approach the final asymptotic value z = ¢ as £ > 1. Values of
¢ < 1 correspond to overventilated flames that reach the axis, while values of ¢ > 1 correspond
to underventilated flames reaching the confining duct.

The solution, which depends on v, C, G, and m, = Cgo¢, is obtained by integrating (2)-
(4) supplemented with (7) and (8) with boundary conditions (6) and with (9) and (10) used to
evaluate the initial profiles at x < 1. Sample results of integrations are given below for a non-
buoyant flame. As can be seen in the plots obtained for increasing -y, the acceleration due to
heat release tends to reduce the size of the mixing region. Correspondingly, flow recirculation is
achieved for values of the critical Craya-Curter number (e.g., C. = 0.28 for U, = 1 and v = 5)
much smaller than those of the frozen flow (C, = 0.65). A decreasing flux of oxidizer is used for the
integrations shown on the right-hand side of the figure. As can be seen, the effect is twofold: the
reduced oxidizer feed causes an increase in the global equivalence ratio, so that underventilated
flames eventually appear, whereas the reduced coflow momentum flux leads to the emergence of
a recirculating region. Because of the enhanced mixing rate associated with the recirculation,
the rich flames that appear for small C tend to migrate towards the rear end of the recirculating
region.
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Figure 1: Flame location (solid line) and streamlines (dashed lines) corresponding to ., = 0.27,
G =0, and U, = 1 for different values of 7y (left-hand-side plots, C = 0.3) and for different values
of C (right-hand-side plots, ¥ = 7). Equal increments d9 = 0.04 are used for the downstream
flowing streamlines, while §» = 0.005 is selected for the streamlines of recirculating flow.
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