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Many experimental observations show that premixed turbulent flame speed and thickness grow in
time (or with distance from flame-holder) in most flames. The goal of this work is to numerically study
the effects of pressure-driven transport on the development of premixed turbulent flame structure,

thickness, and speed by solving the following generalized flamelet closure
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of the mean combustion progress variable balance equation

8 e 8 o~ A a w T
— — = — — . 2
51 (P9 + 5o (00) = — o () + W 2)
——
v

Term III in Eq. 1 is a typical closure of the mean rate of product creation, W, provided by various
flamelet models [1,2]. Different models result in different expressions for the flame time scale, 77, but
the specification of such an expression is not needed here, because a closure for 7; does not affect the
numerical results presented in a normalized form if 7 is not varied in space and time.

Terms I and IT in Eq. 1 model turbulent diffusion and pressure-driven transport [2], respectively,
and together represent a generalized closure of the transport term IV in Eq. 2. Here, D; is the
turbulent diffusivity and U is a velocity scale. Term II may be associated with the submodel of
pressure-driven transport, 7Sy pé(1 — ¢)/2, developed by Bray et al. [3] for stagnating flames. Then,
U =~SL/2, where v = p,/ps — 1 is the heat release factor, and Sy, is the laminar flame speed.

We have kept the turbulent diffusion term I in Eq. 1; despite the fact that, in many laboratory
flames, this term is much smaller than the pressure-driven transport term IT almost in the whole flame

brush (0 <c; <é<ea<1,¢1 €1,1—ce <« 1), for instance, term I was omitted by Bray et al. [3]



when modeling stagnating flames. One reason for keeping this term in simulations of a planar flame
moving in a statistically stationary and uniform mixture is as follows. If one omits term I in this case,

then the asymptotically steady solution of Eq. 1 should satisfy the following equation

sg% - u% [%5(1_5)] + L (pﬂu)qau—a). (3)

However, Eq. 3 includes only three dimensional parameters, S7, U, and 7y, and, due to dimensional
reasons, Sy = U f(y) for an arbitrary 7y, i.e., the fully-developed turbulent flame speed, Sy, does not
depend on the mean rate of product creation. The absurdity of this conclusion® justifies keeping of
term I in Eq. 2 even if this term is much less than term II at ¢; < ¢ < ca.

To simulate the propagation of a statistically planar 1D flame in statistically stationary and uniform
mixture from the left to the right, Eq. 1 has been normalized
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by invoking the following velocity, u, = 2(Dt/7'f)1/2, length, [, = (DtTf)1/2, time, t, = l,/u,, and
density, p,, scales and, then, solved together with the normalized mass balance equation and with the
following state equation, g = (1 +~&) ! [1,2]. The focus of this work is placed on the effects of P on
the unsteady solution of Eq. 4, or, in other words, on the role played by pressure-driven transport,
since we have already studied the dynamic behavior of the solution of Eq. 4 with P =0 [4,5].

Shown in Fig. 1 are the effects of P on the self-similarity of the structure of developing flames.
Numerous experimental data discussed elsewhere [4,5] show that the structure of various premixed
turbulent flames is self-similar, i.e., the spatial profiles of the progress variable, normal to the flame
brush, are described by the same function at different instants ¢ after ignition when using the developing
flame brush thickness, d;(¢), in order to normalize the spatial coordinate. Our previous simulations
[4,5] have shown that combustion models associated with ¢ = 0 in Eq. 4 predict this property if P = 0,
whereas the models associated with ¢ = 1 are not capable for doing so (Fig. 1b). An increase in P

makes the self-similarity of the profiles more pronounced if ¢ = 0 (Fig. 1la) and almost self-similar

'The comment cannot be applied to stagnating flames studied by Bray et al. [3], because one more dimensional

parameter, the flame strain rate, should be taken into account in the latter case.
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Figure 1: Progress variable profiles, computed at different instants and normalized with §;*(t) = max|dé/dz|.
a-g=0and P=2;b-g=1land P=0;c-¢g=1and P =2.
solutions can be obtained even with ¢ = 1 if P is sufficiently large (Fig. 1c). Thus, term IT in Eq. 1,
associated with the pressure-driven transport, enhances the trend to self-similarity.

Figure 2 shows that both normalized burning velocity, u; = [0, Wdz/(p,up), and flame thickness,
671 (t) = max|dé/dz|, are decreased by P. However, Fig. 3 indicates that the effects of P on the
development of u; and §; can be substantially reduced by re-normalizing the results using new
velocity, ueo = ut(t’ — 00), length, dr00 = 6(¢ — 00), and two time, 6;o0/utco or P72, scales.
Indeed, curves drawn with the former time scale are close one to another if P < 0.5, whereas the
curves computed at P = 1 differ substantially from the other curves (Fig. 3a); and curves drawn with
the latter time scale are close one to another if P > 0.5, whereas the curves computed at P = 0.2 differ

substantially from the other curves (Fig. 3b) Moreover, the obtained results show that u; e ~ 1/P
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Figure 2: Development of normalized burning velocity (a) and flame thickness (b), computed with ¢ = 0 (fine

curves) and ¢ = 1 (bold curves) at various P: 1- P=0;2-P=0.1;3-P=0.2;4- P =0.5.
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Figure 3: Development of burning velocity (fine curves) and flame thickness (bold curves), computed with
¢ = 0 at various P, shown in legends, and re-normalized with the following velocity, u oo, length, ¢ o, and

time scales, d;,00/us,00 (&) OF P2 (b).

and 6; 0 ~ 1/P if P > 0.5. These observations imply that the flame dynamics changes substantially
at P = 0.5 (or U ~ (Dy/77)"/?). We may note also that the development of re-normalized burning
velocities and flame thicknesses is similar to one another in the whole range of P studied (cf. fine and
bold curves in Fig. 3), in line with the results of a theoretical analysis of the self-similar solutions of
Eq. 2, discussed in Refs. [5].

When considering the ranges of weak (P < 0.5) and strong (P > 0.5) pressure-driven transport
separately, the role played by pressure-driven transport is mainly reduced to a decrease in u; o and
0t,00 by P; whereas the development of re-normalized burning velocities and flame thicknesses is
weakly affected by P. Moreover, if the submodel of W is able to yield a self-similar flame structure
(g = 0), then, the structure is weakly affected by P. If the submodel of W is not capable for doing so

(¢ = 1), then, the pressure-driven transport can make the structure self-similar (cf., Figs. 1b and 1c).
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