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Abstract

A numerical study of the response to a sudden drop in pressure of planar premixed flames modelled by the two-step
Zel’dovich reaction scheme is presented. Critical minimum pressures are computed with different values of the
ratio of pre-exponential factors of the constituent reactions. The computations show that the flame becomes more
unstable as the temperature sensitivity of the rate of heat release increases. The increase in the activation energy
of the first reaction is found to increase the critical minimum pressure significantly.
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Introduction

The bulk quenching of premixed flames is supposed to be one of the reasons for the emission of unburned hydrocarbons
from internal combustion engines. Experimental observations [1], which showed the incomplete combustion of lean
methane-air mixtures due to flame quenching in an expanding chamber, support this hypothesis. These results [1]
also indicate that the point of flame quenching depends on the amount of volume expansion and is found to be nearly
independent of the rate of chamber expansion. In this paper we consider one aspect of this process, namely, the
response of a laminar premixed flame to sudden pressure drops.

The effect of a sudden pressure-drop on premixed flames has been studied extensively. Earlier modelling studies by
Peters and Ludford [2] and Ledder and Kapila [3] found that, for a sufficiently rapid decrease in pressure, the solution
for the flame speed did not exist. They suggested that indicated extinction. However, the extinction event itself was
not modelled. Later Johnson et al. [4] solved the nonlinear governing equations numerically and showed that, for a
sufficiently large decrease in pressure, extinction could occur. Most of the previous studies used single-step chemistry
in their calculations, except the multi-step ozone flames used by Johnson et al. [4].

As discussed above the one-step global reaction model can predict extinction by depressurization. However, using
a more realistic two-step scheme for hydrocarbon combustion, Hocks et al. [5] showed that the speed of quenching of a
laminar flame at a cold wall depends on the concentration of the intermediate species or radicals. They also found that
the high concentrations of radicals are realistic features of acetylene and methanol flames and the two-step process
used is adequate to describe flame-quenching, whereas a one-step global mechanism is not. Hence, the objective of
the present work is to study the response of a premixed flame to a sudden drop in pressure using a generic two-step
reaction scheme, namely, the Zel’dovich mechanism [6]. The stability boundaries in terms of the critical minimum
pressure have been computed.

The Physical Problem, Model and Solution Technique

We consider an unsteady, planar, one-dimensional premixed flame with the following assumptions: (1) pressure, p′, is
uniform in the flame; however, it can vary with time, (2) the thermal conductivity is proportional to temperature, and
the specific heat is constant, (3) the diffusion coefficients of all species are equal, (4) molecular masses of all species
are equal, and (5) Lewis number Le is constant.
The Chemical Reaction Scheme: The generic Zel’dovich two-step reaction mechanism was used in the present
study.

A + B
R1−→ B + B and B + B + M

R2−→ P + M, (1)



where A is a reactant, B is an intermediate species, C is the final product, and M is a third body. The first step is a
chain- branching reaction with a finite activation energy. The second step is a chain breaking recombination reaction
with zero activation energy. The associated non-dimensional reaction rates [7] are given by

R1 = Λ1pT−1CACB exp[θ1(1− 1/T )] and R2 = Λ3p
2T−2C2

B , (2)

where R1 is the rate of consumption of A in step 1, R2 is the rate of production of P in step 2, Λ1 and Λ2 are the
dimensionless pre-exponential factors of the first and second reactions respectively, θ1 is the dimensionless activation
energy of the first reaction, CA and CB are the dimensionless mass fractions of the species A and B, and T is the
dimensionless temperature.
Governing Equations and Method of Solution: The non-dimensional governing equations for a 1-D laminar
premixed flame, in a mass-weighted coordinate system as given by McIntosh et al. [7], are modified to include the
two-step chemistry. First, these equations are solved numerically to obtain a steady-state solution (Ts(x), CA,s(x), and
CB,s(x)) at p = 1 (for all values of Λ2/Λ1, Λ1 is selected so that the nondimensional mass flux is unity at p = 1). The
pressure is then instantaneously dropped to pf . The temperature field immediately changes because of the expansion,
assumed isentropic and adiabatic conditions. The new temperature is given by

T (x) = Ts(x)p1−γ−1

f , (3)

which is now not consistent with steady flame propagation, so that there is a finite response time as the temperature
and concentration fields adjust. The governing equations are then solved numerically, to obtain the evolution of
temperature and mass fractions with time. We make the assumption that the gas expansion invoked by a planar
pressure disturbance (through the momentum equation) takes place on a much shorter timescale than the combustion
for the one-dimensional case and that the flow remains laminar [1, 8]. We also assume that the time scale associated
with strained flow is larger than the diffusion-reaction time associated with the adjustment of the temperature and
species fields.

Results and Discussion

Extinction of Unstrained Flames: In this section, the critical minimum pressures obtained with the Zel’dovich
mechanism for different values of Λ2/Λ1 and Q2 are presented. The critical minimum pressure, below which extinction
occurs, is calculated as follows. First a steady state solution is obtained at p = 1. The pressure is then suddenly
dropped to a lower value, pf , and the evolution with time of the mass flux at the point of inflexion is computed. Note
that for an adiabatic flame, where there is no heat loss, modelled by Arrhenius reaction so that there is always a small
positive reaction rate, and the mass flux will eventually recover whatever the drop in pressure. However, for practical
purposes, extinction is assumed to occur when the mass flux does not start recovering before some stipulated time,
here taken to be t = 50 (for a methane-air flame at 1 MPa this corresponds approximately to 100 ms).

Figure 1 shows steady-state temperature and mass fraction profiles at p = 1 for different values Λ2/Λ1. In this
case the entire heat release is assumed to take place during the second reaction (Q1 = 0 and Q2 = 0.88). As identified
by Liñán [10], there are three regions: (1) Λ2/Λ1 À 1 where the recombination reaction is very fast compared to the
chain branching reaction and the steady-state solution corresponds to that with an equivalent single step reaction,
(2) Λ2/Λ1 ∼ 1, and (3) Λ2/Λ1 ¿ 1. In the latter two cases, the intermediate species concentrations are high and the
chain branching reaction occurs in a thin reaction zone embedded in a relatively thick recombination reaction zone.
As a result, for Λ2/Λ1 ¿ 1 the heat release in the flame occurs in a relatively wider temperature range.

Figure 2 shows the evolution of the mass flux with time for different values of Λ2/Λ1 after the p is dropped suddenly
to 0.4. It can be seen that the recovery time of the transient mass flux is the longest for Λ2/Λ1 = 101. However, as
Λ2/Λ1 decreases the time for recovery of the mass flux after the initial drop decreases and hence the response becomes
more stable. This could be attributed to a more distributed heat release associated with small values of Λ2/Λ1, and
also the fact that the heat release due to the recombination reaction is not exponentially dependent on temperature
(θ2 = 0). These two factors decrease the drop in the rate of heat release immediately after the drop in pressure.
Consequently the critical minimum pressure decreases as Λ2/Λ1 decreases.



The steady-state solution and the transient mass flux after a sudden pressure drop is influenced also by the
partition of heat release between the two constituent reactions. The mass flux recovery time decreases as Q2 increases
and consequently the critical minimum pressure decreases. So, the response becomes more stable as the larger portion
of heat release takes place in the less temperature sensitive recombination reaction.

The critical minimum pressure was computed for different values of parameters Λ2/Λ1 and Q2 and is shown in
Fig. 3. It is found that in the present case the critical minimum pressure approaches 0.394 as Λ2/Λ1 increases. A
decrease in Λ2/Λ1 or an increase in Q2 stabilizes the burning by decreasing the critical minimum pressure. In the
range of 0.01 < Λ2/Λ1 < 102 the critical minimum pressure varies between 0.28 to 0.394. Experiments conducted with
methane-air mixtures [1] in an expanding chamber found that for an equivalence ratio of 0.605 the volume expansion
ratio (defined as the ratio of increase in volume to the initial volume) at quenching, is approximately 1.2. Assuming
isentropic expansion, this corresponds to a critical minimum pressure of 0.33. Hence, the critical minimum pressures
calculated in this work for the Zel’dovich mechanism compare well with the equivalent experimental values.
Effect of the Activation Energies: The activation energy is another important kinetic parameter which affects the
temperature sensitivity of the reaction rates and the rate of heat release. Figure 4 shows the variation of the critical
minimum pressure with θ1. As θ1 increases, the reaction zone thickness decreases and the heat release takes place
more and more in the high temperature region. This makes the rate of heat release more temperature sensitive and
hence the flame becomes easier to extinguish as θ1 increases. The above results may also be interpreted to represent
the variation of critical minimum pressure with the reactant mixture ratio. As the reactant mixture becomes leaner
the flame temperature decreases. For the same dimensional activation energy, this increases the non-dimensional
activation energy, θ. Therefore, it can be concluded that the critical minimum pressure increases, and hence the flame
is destabilized, as the reactant mixture becomes leaner (effect of T−∞ and and the total non-dimensional heat release,
Q1 + Q2, which are also varied with the flame temperature, on the critical minimum pressure is found to be very
small). This behavior is in qualitative agreement with the experimental observations [1].
Extinction of Strained Flames: Similar calculations were also performed for a flame subjected to a positive strain.
The mathematical model is similar to that used by McIntosh et al. [7]. As in the case of single step chemistry a
positive strain decreased the steady-state burning rate with the Zel’dovich mechanism. Figure 5 shows the steady-
state temperature and mass fraction profiles. The temperature profile became steeper and hence the reaction zone
became thinner. Figure 6 shows the evolution of mass burning rate for pf = 0.4. It is found that a positive strain of
0.5, with the Zel’dovich mechanism, delays the recovery of the mass flux, hence destabilizing the flame.

Conclusions

The critical minimum pressures for the Zel’dovich scheme depend on the ratio Λ2/Λ1 and the partition of heat release
between the two constituent reactions. The critical minimum pressure asymptotically reaches its upper limit, in the
present case 0.394, as Λ2/Λ1 increases. This upper limit is same for all values of Q2. As expected, as fraction of the
total heat released in the less temperature sensitive recombination reaction increases, the flame become more stable.
Finally, an increase in activation energy is found to increase the critical minimum pressure significantly. This may also
be considered to be a demonstration of the destabilizing effect of leaner mixtures because of the decreased reaction
zone temperature.
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Figure 1: Temperature and mass fraction profiles with 
the Zel’dovich mechanism (Q1 = 0 and Q2 = 0.88).
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Figure 2: Evolution of mass flux after a sudden pressure 
drop for the Zel’dovich mechanism (Q1 = 0 and Q2 = 0.88).
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Figure 3: Effect of Λ2/Λ1 and Q2 on the critical minimum 
pressure with the Zel’dovich mechanism
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Figure 4: Effect of θ1 on the critical minimum pressure 
with  different reaction schemes (Q1 = 0, Q2 = 0.88, 

and Λ2 = Λ1)
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Figure 5: Temperature and mass fraction profiles with 
the Zel’dovich mechanism (Q1 = 0 and Q3 = 0.88).

CA
T

CB

Strain = 0.0
Strain = 0.5

0 10 20 30 40 50

-0.2

0

0.2

0.4

0.6

0.8

1

Non-dimensional time, t

N
on

-d
im

en
si

on
al

 m
as

s 
fl

ux

Figure 6: Evolution of mass flux after a sudden 
pressure drop for the Zel’dovich mechanism

 (Q1 = 0 and Q3 = 0.88).
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