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1. INTRODUCTION

Since the pioneering works of Erpenbeck (e.g. [1]), the detonation stability theory contributed to the elucida-
tion and explanation of many detonation phenomena. Careful and thorough calculations of pulsating [2], two- and
three-dimensional [3, 4] instabilities have been performed relatively recently. All such calculations have been done
for gaseous detonations, mostly for simple one-step Arrhenius kinetics. However, the important problem of stability
of high-explosive detonations has not received attention it deserves. The absence of a simple equation of state and
reaction rate law that would accurately describe the reaction zone thermodynamics and the heat-release kinetics has
prevented researchers from addressing this fundamental problem carefully. Moreover, the stability formulation re-
quires an additional condition in the far-field, the so-called radiation condition, that has not been understood well. All
these necessary components have recently been significantly developed, see [5, 6, 7, 8], and the present work is based
on these developments.

Below we describe the mathematical formulation of the linear stability problem for the high-explosive detonation
wave that is based on the reactive Euler equations and constitutive model described in [7]. Calculations of the one-
dimensional steady-state structure and the stability spectra for one- and two-dimensional perturbations are presented.
The numerical method for solving the eigenvalue problem is based on the technique developed in the original work of

Lee and Stewart [2] for calculation of the one-dimensional detonation instability.

2. GOVERNING EQUATIONS

2.1. Reactive Euler equations. Governing equations are the two-dimensional Euler equations for a reactive medium

undergoing one-step chemical reaction,

(2.1) pt+0p-u=0,
(2.2) U +u-Ou+vOp=0,
(2.3) &-+u-Ue+pvd-u=0,
(2.4) A+u-OAN—w=0.

Heree = e(p,v,A) is the specific internal energy as a function of presgrepecific volumes = 1/p, and reaction

progress variablg, wis the reaction rata) = (uj, uy) is the velocity. The governing equations must be supplemented
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by the equation of state= e(p,v,A), rate laww = w(p,V,A), and the boundary conditions at the shock, that is the

Rankine-Hugoniot conditions, and in the far field away from the lead shock, that is the radiation condition.

2.2. The equation of state. The functional form of the equation of state is given by the weighted superposition of the

product and reactant terms [7],

(2.5) e(pah) = | eh(up)+ 2 (- p%(vp»] La-n [ef(w)#fr(p— oo,

where the subscripp is for products,r is for reactants, superscristmeans that the quantity is evaluated along

the expansion isentrope. The reaction progress varialglees from zero in the unreacted explosive to one in the
completely reacted products. The internal energy function both for products and reactants is given in terms of the
Gruneisen coefficients, , andl'r, which depend on the specific volume.

Various reference functions and parameters in equation 2.5 are given as follows [7, 5, 6]. For the products,

Bvve)"+ 3w " k- 14 F )

Pp(V) = Pe TLE 1t
s P g B v
PV T k—1+F(v) ¢ (v/ve)1Ha ’
where
2a(v/ve) " _ PoVe

F(V) =1 Fp=k—14(1-b)F(v).
2

W) +3(v/ve) " k—1+a’
The parameterge, V¢, a, k, n, andb are specific for a given explosive and are found by calibrating to experimental

data. Corresponding reference functions for the reactants are given by

& (4By) 4By)® y
) =py U e = [ piay
& 5! 0
. A2
y=1-V/Vo, b= T (v) =0+ 2y

The constant#, B, I'%, andZ are again determined by calibration with shock Hugoniot dasas 1/vo is the initial
density of the explosiveg is the heat of reaction.
To finalize the equation of state, we also need a relationship betwgandv;. Define® = v;/v,. Then, if

v= (1—-A)v; +Avp denotes the total specific volume of the mixture of products and reactants, we have

v dv

TArI N T T AT ane

Vp

Now ®(A) will be determined by fitting to the experimental data. Although constant valdeaffaboutl gives good
agreement with most of the experimental data, simple linear functions, for example; + coA, have also been used

in the calculations, with fitting parametersandc,.
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2.3. The heat release rate.The reaction rate law used in the calculations is the following superposition
1 1
(2.6) w= 5 {1—tanh{100A —0.45)]} ooy + 5 {1+ tanh[100(A — 0.45)]} wp,

where
p 4 E>
wy =ki(1—A) (> Wy = kz(l)\)O'Sexp<cz> .

Pcj
The rate constants for PBX-9502 &ie= 8.5, ko, = 200, E; = 125 The units here ar&Pa mm andus The constants
in 2.6 have been determined by fitting the numerically calculated results to two experiments, one that determines
the run-to-detonation distance as a function of pressure in shock ignition test, and the other that def@rrines

dependence.

3. ANALYSIS OF THE LINEAR INSTABILITY

3.1. Steady-state one-dimensional solutionFor the analysis of the linear stability we need to find the basic state

first, which is here the steady-state one-dimensional detonation. The mass, momentum, and energy equations can
be directly integrated to yield algebraic relations betwpen e, andA. To get the complete solution profiles, one
integrates the reaction rate equation in which all state variables can be written as functionst tfie shock front,

x = 0, the boundary conditions are those given by the Rankine-Hugoniot relations. The fronCgpisetbtermined

from the Chapman-Jouguet condition at the sonic point.

3.2. Linearized Euler equations. Next, we rewrite the governing equations 2.1-2.4 in the shock-attached frame and
linearize about the steady state (denoted by superscript (*)). The coordinate transformation from the laboratory frame

(¥, y',t") to the shock-attached frante y,t) is accomplished by

(31) X:XI_D;tl_w(yl7tl)’y:ylat:tlv

wherey is the shock front displacement from the unperturbed position. Applying this coordinate transformation and

using the normal-mode decomposition of the form (prime denotes the perturbation amplitude)

(3.2) 3q(x,y,t) = 8q' explat + iky),

with the transverse wavenumbeand complex growth rate, we obtain the set of linear ordinary differential-algebraic
equations with variable coefficients,

/
(3.3) A*%+[aB+C*}f’+b* =0.

T
Heref'(x) = ( P'(X), Ux), WX, €x), NX, pKX ) is the state vector for perturbation amplitudes,

B =diag(1,1,1,1,1,0), andA*(x,a), C*(x,a), andb*(x,a) are functions of the steady state solution.
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The eigenvaluea and corresponding eigenfunctiofi€an be determined by solving the system 3.3 subject to the

Rankine-Hugoniot conditions at the front and radiation condition in the far field.

3.3. Boundary conditions. At the shock front the standard Rankine-Hugoniot conditions must be satisfied [9]. These
conditions are linearized about the steady state and subsequently used as boundary conditions for 8.3 &
determine the eigenvalues we need to solve the radiation condition at the end of the reaction zone. For the two-

dimensional perturbations we have the following condition on the perturbation amplitudes [8]:
(3.4) ap 4 appCol) + ikppCiUy = PrCa OpWy .

The subscripb denotes the burnt state (far field) améndc are the thermicity and sound speed [9].

4. CONCLUSIONS

In this work we address the problem of the linear stability of high-explosive detonation waves using a recently
developed equation of state that is valid for unreacted explosive, detonation products, and throughout the reaction
zone. A new reaction rate law has also been developed that can reproduce experimental data on the shock ignition
and front speed - curvature dependence. This law is incorporated in the present work. Another new ingredient of the
current analysis is the far-field boundary condition that is required for the calculation of the stability spectrum.

The equation of state has been calibrated for two explosives, PBX-9502 and nitromethane. The structure of the
steady-state Chapman-Jouguet detonation has been calculated for these explosives and its stability with respect to one-

and two-dimensional perturbations is investigated.
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