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1. INTRODUCTION

Since the pioneering works of Erpenbeck (e.g. [1]), the detonation stability theory contributed to the elucida-

tion and explanation of many detonation phenomena. Careful and thorough calculations of pulsating [2], two- and

three-dimensional [3, 4] instabilities have been performed relatively recently. All such calculations have been done

for gaseous detonations, mostly for simple one-step Arrhenius kinetics. However, the important problem of stability

of high-explosive detonations has not received attention it deserves. The absence of a simple equation of state and

reaction rate law that would accurately describe the reaction zone thermodynamics and the heat-release kinetics has

prevented researchers from addressing this fundamental problem carefully. Moreover, the stability formulation re-

quires an additional condition in the far-field, the so-called radiation condition, that has not been understood well. All

these necessary components have recently been significantly developed, see [5, 6, 7, 8], and the present work is based

on these developments.

Below we describe the mathematical formulation of the linear stability problem for the high-explosive detonation

wave that is based on the reactive Euler equations and constitutive model described in [7]. Calculations of the one-

dimensional steady-state structure and the stability spectra for one- and two-dimensional perturbations are presented.

The numerical method for solving the eigenvalue problem is based on the technique developed in the original work of

Lee and Stewart [2] for calculation of the one-dimensional detonation instability.

2. GOVERNING EQUATIONS

2.1. Reactive Euler equations.Governing equations are the two-dimensional Euler equations for a reactive medium

undergoing one-step chemical reaction,

ρt +∇ρ ·u = 0,(2.1)

ut +u ·∇u+v∇p = 0,(2.2)

et +u ·∇e+ pv∇ ·u = 0,(2.3)

λt +u ·∇λ−ω = 0.(2.4)

Heree= e(p,v,λ) is the specific internal energy as a function of pressurep, specific volumev = 1/ρ, and reaction

progress variableλ, ω is the reaction rate,u = (u1,u2) is the velocity. The governing equations must be supplemented
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by the equation of statee= e(p,v,λ), rate lawω = ω(p,v,λ), and the boundary conditions at the shock, that is the

Rankine-Hugoniot conditions, and in the far field away from the lead shock, that is the radiation condition.

2.2. The equation of state.The functional form of the equation of state is given by the weighted superposition of the

product and reactant terms [7],

(2.5) e(p,v,λ) = λ
[
es

p(vp)+
vp

Γp

(
p− ps

p(vp)
)]

+(1−λ)
[
es

r(vr)+
vr

Γr
(p− ps

r(vr))
]
,

where the subscriptp is for products,r is for reactants, superscripts means that the quantity is evaluated along

the expansion isentrope. The reaction progress variableλ goes from zero in the unreacted explosive to one in the

completely reacted products. The internal energy function both for products and reactants is given in terms of the

Grüneisen coefficients,Γp andΓr , which depend on the specific volume.

Various reference functions and parameters in equation 2.5 are given as follows [7, 5, 6]. For the products,

ps
p(v) = pc

[
1
2 (v/vc)

n + 1
2 (v/vc)

−n]a/n

(v/vc)
k+a

k−1+F(v)
k−1+a

,

es
p(v) =

ps
pv

k−1+F(v)
= Ec

[
1
2 (v/vc)

n + 1
2 (v/vc)

−n]a/n

(v/vc)
k−1+a ,

where

F(v) =
2a(v/vc)

−n

1
2 (v/vc)

n + 1
2 (v/vc)

−n , Ec =
pcvc

k−1+a
, Γp = k−1+(1−b)F(v).

The parameterspc, vc, a, k, n, andb are specific for a given explosive and are found by calibrating to experimental

data. Corresponding reference functions for the reactants are given by

ps
r(v) = p̂

4

∑
j=1

(4By) j

j!
+C

(4By)5

5!
, es

r(v) = e0 +v0

Z y

0
ps

rdy,

y = 1−v/v0, p̂ =
ρ0A2

4B
, Γr(v) = Γ0

r +Zy.

The constantsA, B, Γ0
r , andZ are again determined by calibration with shock Hugoniot data,ρ0 = 1/v0 is the initial

density of the explosive ,e0 is the heat of reaction.

To finalize the equation of state, we also need a relationship betweenvp and vr . Define Φ = vr/vp. Then, if

v = (1−λ)vr +λvp denotes the total specific volume of the mixture of products and reactants, we have

vp =
v

λ+(1−λ)Φ
, vr =

Φv
λ+(1−λ)Φ

.

Now Φ(λ) will be determined by fitting to the experimental data. Although constant value ofΦ of about1 gives good

agreement with most of the experimental data, simple linear functions, for example,Φ = c1+c2λ, have also been used

in the calculations, with fitting parametersc1 andc2.
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2.3. The heat release rate.The reaction rate law used in the calculations is the following superposition

(2.6) ω =
1
2
{1− tanh[100(λ−0.45)]}ω1 +

1
2
{1+ tanh[100(λ−0.45)]}ω2,

where

ω1 = k1(1−λ)
(

p
pc j

)4

, ω2 = k2(1−λ)0.5exp

(
−E2

c2

)
.

The rate constants for PBX-9502 arek1 = 8.5, k2 = 200, E2 = 125. The units here areGPa, mm, andµs. The constants

in 2.6 have been determined by fitting the numerically calculated results to two experiments, one that determines

the run-to-detonation distance as a function of pressure in shock ignition test, and the other that determinesD− κ

dependence.

3. ANALYSIS OF THE LINEAR INSTABILITY

3.1. Steady-state one-dimensional solution.For the analysis of the linear stability we need to find the basic state

first, which is here the steady-state one-dimensional detonation. The mass, momentum, and energy equations can

be directly integrated to yield algebraic relations betweenp, v, e, andλ. To get the complete solution profiles, one

integrates the reaction rate equation in which all state variables can be written as functions ofλ. At the shock front,

x = 0, the boundary conditions are those given by the Rankine-Hugoniot relations. The front speedD∗
s is determined

from the Chapman-Jouguet condition at the sonic point.

3.2. Linearized Euler equations. Next, we rewrite the governing equations 2.1-2.4 in the shock-attached frame and

linearize about the steady state (denoted by superscript (*)). The coordinate transformation from the laboratory frame

(xl ,yl , t l ) to the shock-attached frame(x,y, t) is accomplished by

(3.1) x = xl −D∗
st

l −ψ(yl , t l ), y = yl , t = t l ,

whereψ is the shock front displacement from the unperturbed position. Applying this coordinate transformation and

using the normal-mode decomposition of the form (prime denotes the perturbation amplitude)

(3.2) δq(x,y, t) = δq′exp(αt + iky),

with the transverse wavenumberk and complex growth rateα, we obtain the set of linear ordinary differential-algebraic

equations with variable coefficients,

(3.3) A∗ df′

dx
+[αB+C∗] f′+b∗ = 0.

Here f′(x) =
(

ρ′(x), u′1(x), u′2(x), e′(x), λ′(x), p′(x)
)T

is the state vector for perturbation amplitudes,

B = diag(1,1,1,1,1,0), andA∗(x,α), C∗(x,α), andb∗(x,α) are functions of the steady state solution.
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The eigenvaluesα and corresponding eigenfunctionsf′ can be determined by solving the system 3.3 subject to the

Rankine-Hugoniot conditions at the front and radiation condition in the far field.

3.3. Boundary conditions. At the shock front the standard Rankine-Hugoniot conditions must be satisfied [9]. These

conditions are linearized about the steady state and subsequently used as boundary conditions for 3.3 atx = 0. To

determine the eigenvaluesα, we need to solve the radiation condition at the end of the reaction zone. For the two-

dimensional perturbations we have the following condition on the perturbation amplitudes [8]:

(3.4) αp′+αρbcbu′1 + ikρbc2
bu′2 = ρbc2

b σbω′.

The subscriptb denotes the burnt state (far field) andσ andc are the thermicity and sound speed [9].

4. CONCLUSIONS

In this work we address the problem of the linear stability of high-explosive detonation waves using a recently

developed equation of state that is valid for unreacted explosive, detonation products, and throughout the reaction

zone. A new reaction rate law has also been developed that can reproduce experimental data on the shock ignition

and front speed - curvature dependence. This law is incorporated in the present work. Another new ingredient of the

current analysis is the far-field boundary condition that is required for the calculation of the stability spectrum.

The equation of state has been calibrated for two explosives, PBX-9502 and nitromethane. The structure of the

steady-state Chapman-Jouguet detonation has been calculated for these explosives and its stability with respect to one-

and two-dimensional perturbations is investigated.
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