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1.  Introduction 

Formulation of pressure history at the thrust 

wall is an important issue in researches on pulse 

detonation engines (PDEs).  In this paper, we 

present theoretical formulation of the pressure his-

tory at the thrust wall of a simplified PDE.  In ad-

dition, the derived pressure history is compared 

with numerical and experimental results. 

 

2.  Theoretical Analysis 

A PDE is modeled as a straight tube with 

fixed cross section.  One end of the tube is closed 

(thrust wall) and the other end is open.  For 

simplicity, gases are treated as polytropic gases and 

as ideal fluids.  Flow is assumed to be 

one-dimensional.  In this paper, x  is coordinate 

along the axis of the PDE tube where x = 0  and 

x L=  correspond to the closed and open ends, re-

spectively.  We analyze one cycle of PDE opera-

tion below. 

Figure 1 shows a schematic x-t diagram of 

characteristics in the PDE tube.  The tube is ini-

tially filled with a uniform detonable gas at rest, 
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characterized by 1γ , 1p , 1a , and ( )1 0u =  where 

γ , p , a , and u  stand for the ratio of specific 

heats, pressure, sound speed, and flow velocity in 

the x  coordinate, respectively.  At the time 

t = 0 , a Chapman-Jouguet detonation wave is ig-

nited at the closed end and simultaneously starts to 

propagate toward the open end.  The gas at the 

rear surface of the detonation wave is characterized 

by 2γ , 2p , 2a , and 2u .  The location of the rear 

surface of the detonation wave ( )2x  is given by 

2 CJx D t=  where DCJ  is the Chapman-Jouguet 

detonation speed. 

Because the gas on the closed end is at rest, 

the detonation wave is followed by a self-similar 

rarefaction wave, which is called the decelerating 

rarefaction wave hereafter.  The gas at the rear 

boundary of the decelerating rarefaction wave is 

characterized by ( )3 2γ γ= , 3p , 3a , and ( )3 0u = , 

which characterize all gas in the region 0 3≤ ≤x x  

as well, where ( )3 3x a t=  is the location of the rear 

boundary of the decelerating rarefaction wave. 

The detonation wave reaches the open end at 

the time CJt , and simultaneously, another rarefac-

tion wave starts to propagate from the open end 

toward the closed end, which is called the exhaust-

ing rarefaction wave hereafter.  We can calculate 

the location of the front boundary of the exhausting 

rarefaction wave ( )rfx  since rfx  is a characteris-

tic ( )u a−  in the decelerating rarefaction wave.  

At the time t ∗ , the front boundary of the exhaust-

ing rarefaction wave intersects with the rear 

boundary of the decelerating rarefaction wave 

( )*
*

rf rf t t
x x

=
= .  After the time t ∗ , the front 

boundary of the exhausting rarefaction wave 
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propagates in the uniform gas characterized by 

( )3 2γ γ= , 3p , 3a , and ( )3 0u = .  The pressure 

plateau at the thrust wall lasts until the time plateaut  

at which the front boundary of the exhausting rare-

faction wave reaches the closed end.  In the time 

region plateau0 t t≤ ≤ , pressure at the thrust wall 

( )wp  is kept as w 3p p= . 

The exhausting rarefaction wave just before 

the time plateaut  can be approximated as a 

self-similar rarefaction wave propagating from the 

open end toward the closed end in a uniform gas 

characterized by ( )3 2γ γ= , 3p , 3a , and ( )3 0u = .  

By using this approximation, pressure at the thrust 

wall ( )wp  in the time region plateaut t≤  is given 

by an implicit function of t :(1) 

3 plateau
3

1 3 5
7 7 7

w w w

3 3 3

3 1 3
8 4 8

La t t L
a

p p p
p p p

− − −

 
+ − 

 

     
= + +     

      , 

which is a result of interference between the 

self-similar exhausting rarefaction wave and its re-

flection from the solid wall.  Pressure at the thrust 

wall ( )wp  decays down to the initial pressure 

( )1p  at the time exhaustt .  For usefulness, we fitted 

the above implicit function by an explicit function:  

w 3
plateau

3 3

3
plateau

3

exp

       exp
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A B

C D

A B

C D

p a Lk k t t
p L a
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k k
k k

  
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  
  

+ − + −  
  

= = 
 = =  . 

The boundary of the region of interference 

between the exhausting rarefaction wave and its 

reflection from the solid wall ( )irx  reaches the 

open end at the time #t .  Since irx  is a charac-

teristic ( )u a+  in the exhausting rarefaction wave, 

we can calculate irx . 

Summarizing the theoretical analysis, the 

pressure history at the thrust wall of a simplified 

PDE is given by the following formula: 

( )

( )
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and 
exhaust

w 1t t
p p

=
= ,  

where 

3 1Ap pδ= , 
2

1 CJ 2
3 CJ2

1 CJ

1
2

Ma D
M

γ γ
γ

+= , plateau CJBt tδ= ,  



 

T. Endo et al., submitted to 19th ICDERS, revised version,  4/4 

exhaust CJCt tδ= , CJ CJt L D= , CJ CJ 1M D a= , 

2

2

1
2 2 1
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2
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and 
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. 

 

3.  Comparison with Simulation and Experiment 

Figure 2(a) shows the results of a numerical 

simulation and the theoretical analysis in the case 

that the initial gas was a stoichiometric hydro-

gen-oxygen mixture of the room temperature and 

of 1 1p =  atm, and the tube length was 0.9L =  m.  

In this case, 1 2 7 5γ γ= =  and CJ 5.31M =  (ob-

tained from the experiment) were used for the ana-

lytical formula, and a two-step reaction model was 

adopted in the numerical simulation.  As shown in 

Fig. 2(a), the theoretical analysis agreed very well 

with the numerical simulation. 

Figure 2(b) shows the results of an experiment 

and the theoretical analysis in the same case as Fig. 

2(a).  As shown in Fig. 2(b), the theoretical analy-

sis agreed with the experiment successfully. 

 

4.  Conclusions 

We theoretically derived a formula describing 

pressure history at the thrust wall of a simplified 

pulse detonation engine (PDE).  The derived for-

mula was compared with numerical and experi-

mental results, and agreed with them very well. 
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