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Abstract

We reexamine the laminar flame speed dependence on a week stretch in the presence of a volu-

metric heat loss, using a Near-Equidiffusion-Flame asymptotic analysis similar to that of [1]. For

simplicity a thermo-diffusive approximation with an arbitrarily prescribed flow field is adopted.

We show that the flame speed-stretch relation remains valid in non-adiabatic situations, provided

the speed and stretch are rescaled and an effective Lewis number is used. For illustration, the case

of two-dimensional flame edges in the counterflow configuration is examined and a comparison

with numerical calculations is made. Detailed study of the latter case extending the asymptotic

results will also be provided.

Formulation

The non-dimensional governing equations for our model are

∂θ

∂t
+ v · ∇θ = ε∆θ + ε−1ω − ε−1

β
κθ

∂yF

∂t
+ v · ∇yF = εLe−1∆yF − ε−1ω .
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Here yF and θ are the scaled fuel mass fraction and temperature. v is the velocity field measured

with the laminar speed S0
L of an adiabatic planar flame. The parameter ε ≡ l0Fl/L measures the

thickness of the planar adiabatic flame l0Fl relative to the reference length L (typically the flow

scale or the flame front radius of curvature). κ is a scaled heat-loss coefficient and Le is the Lewis

number. Finally, ω is the reaction rate given by

ω =
β2

2
yF exp

[
β(θ − 1)

1 + α(θ − 1)

]
,

where β is the Zeldovich number, and α a thermal expansion coefficient.

As boundary conditions needed for the asymptotic analysis we take

θ = 0 , yF = 1 as x → −∞,

corresponding to the conditions in the frozen mixture along with the requirement that the solu-

tions remain free from exponentially growing terms as x → ∞.

Asymptotic analysis and illustration

We first consider the limit β → ∞ with lF ≡ β(Le − 1) and κ being of order one. The problem

can thus be reformulated in terms of the leading order temperature θ0 and the excess enthalpy

h ≡ θ1 + y1
F , where superscripts indicate orders of expansions in β−1. In the reformulated

problem, which is free from β, we then examine the thin flame limit ε → 0. Skipping details,

we simply record the two-term expansion obtained for the laminar flame speed SL in the form

SL = S0 + εS1. S0 is found to obey

S0 exp(κ/S2
0) = 1 .
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Thus, to leading order, at each location of the flame front, SL is equal to the speed of the

non-adiabatic planar flame, as one may expect. To second order, the result can be written as

SL

S0
= 1−

(
1 +

l̃F
2

)
K̃ε .

Here we have introduced the effective reduced Lewis number defined by

l̃F =
lF

1 − 2κ/S2
0

and the non-dimensional flame stretch K̃. The non-dimensional flame stretch K̃ is such that it

reduces in the adiabatic case κ = 0 to the well known expression

K̃ = −n · ∇ × (v × n) + (vflame · n)(∇ · n) ,

where v and vflame are the fluid and flame velocities, respectively, and n a unit vector normal

to the flame front. Our results show that the flame-speed stretch relationship known in the

literature may be applied in non-adiabatic situations provided that the laminar flame speed and

stretch are scaled with the laminar speed and time of the non-adiabatic flame and an effective

Lewis number is used. The fact that the presence of heat-loss modifies the effective Lewis number

has important implications on flame stability, and is consistent with the conclusions of stability

studies in the literature.

As illustration, we use the asymptotic results to examine the propagation of two-dimensional

edge-flames in the counterflow configurations (see [2] for details). The propagation speed U of

the structure as a whole in weak strain situations is found to be given by

U

S0
= 1 −

[
1 +

1
2

lF
1 − 2κ/S2

0

]
4ε2

S2
0

Comparison with numerical calculations are reported in Figure 1. Here, to be consistent with the

notation of [2], we have used ε2, rather than ε, to characterise the thickness of the front relative
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Figure 1: Comparison between the asymptotic and numerical results.

to its radius of curvature (typically the distance between the trailing planar wings of the flame

front).

Plotted is U versus κ for ε = 0.1, β = 8, and lF = 0. It is seen that the qualitative agreement

is good. The quantitative discrepancy observed is a consequence of the finite activation energy

used in the computations which underestimate the value of κ at extinction (κnum
ext ≈ 0.122 to be

compared with the asymptotic value κasy
ext ≈ 0.184), as well as the value of U corresponding to

κ = 0, say Û ( Ûnum ≈ 0.84 to be compared with Ûasy ≈ 0.96). However, a linear rescaling of

the numerical results ( κ → κκasy
ext /κnum

ext , U → UÛasy/Ûnum), shows that the rescaled numerics

compare well with the asymptotics, even in near-extinction conditions. Additional results on

flame-edges in the last configuration, not restricted to the thin flame limit, will be also presented.
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