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It is well known that flammable regions of a combustible mixture are not only affected by flame
propagation rates, but also by their stability properties. The stability characteristics of premixed flames
and the onset of instabilities are therefore important both for fundamental research as well as for the
development of new combustion technologies.

Flame oscillations is a problem that has been studied extensively in the literature. The spontaneous
oscillation of a plane premixed flame is known to result from the disparity between the thermal diffu-
sivity of the mixture and the molecular diffusivity of the deficient component. Asymptotic theories [1]
predict that oscillations occur when the effective Lewis number Le is sufficiently bigger than one or,
more specifically, when Le > Le∗ with Le∗ = 1+4(1+

√
3)β−1; here β is the Zeldovich number assumed

large. This has also been verified by numerical calculations [2] which show that, as β →∞, the critical
Lewis number for the onset of instability Lec approaches Le∗. Calculations also show the sensitivity of
the results to the specified value of β; for example, with β = 10 the critical Lec is increased by nearly
70%. In any case, the predicted Lewis number beyond which oscillations occur is quite large and not
easily accessible in ordinary mixtures. For this reason experimental observations have been limited to
burner-stabilized flames where the influence of conductive losses to the burner rim act to lower Lec.

In this presentation we examine the propagation of premixed flame fronts in channels of finite widths
and in the presence of convection that either supports or opposes the propagation. The channel’s width
is treated as a parameter so that the analysis spans the whole range from narrow to wide channels.
As a result of the imposed flow and of conductive heat loss to the walls, the flame is curved and
propagates at a speed different than the laminar flame speed [3]. Unlike planar fronts their stability
properties have not been previously examined. Our objective is to investigate the conditions for steady
propagation and for the onset of oscillations leading to pulsating-propagation. The relevance of this
work extends beyond its fundamental importance; the results are of interest to flammability studies
and to the evolving technological interest in micro-scale combustion.

We consider a two-dimensional deflagration wave that travels in an infinitely long channel of width
2a, separating the fresh cold mixture from the hot combustion products. A diffusive-thermal model,
which allows examining the propagation of a flame in a prescribed flow while neglecting the effect that
the flame has on the flow field, is considered. The flow here is assumed to be a Poiseuille flow with
a centerline velocity u0 taken to be positive when the flow is directed from the unburned towards the
burned gas, and negative when directed from the burned towards the unburned gas; see Figs. 1 and
2. The chemical activity is described by a one-step overall reaction and proceeds at a rate given by an
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Arrhenius law with activation energy E and pre-exponential factor B.
We select as a unit length the half-width of the channel a, and as a unit speed the laminar flame

speed SL. The ratio of the laminar flame thickness lth to the width of the channel, denoted by ε ≡ lth/a,
is treated as a parameter. The mass fraction of the deficient reactant is normalized by its value in
the fresh mixture Yu and a non-dimensional temperature θ is defined via θ = (T − Tu)/(Ta − Tu),
where Tu is the temperature of the unburned gas and Ta is the adiabatic flame temperature. Thus, the
dimensionless governing equations in a frame attached to the propagating flame become

∂θ

∂t
+

[
U + u0(1− y2)

] ∂θ

∂x
− ε∇2θ = ε−1$ (1)

∂Y

∂t
+

[
U + u0(1− y2)

] ∂Y

∂x
− εLe−1∇2Y = −ε−1$ (2)

where Le is the Lewis number and

$ =
1

2Le
β2 Y exp

{
β(θ − 1)

1 + α(θ − 1)

}
(3)

is the reaction rate with β = E(Ta − Tu)/R
o
T 2

a the Zeldovich number, R
o

the gas constant, and
α = (Ta − Tu)/Ta the heat-release parameter. The large activation energy expression for SL has been
used in expression (3) for ω. Finally U = U(t) is the flame propagation speed measured with respect
to the walls.

Far to the left, the chemistry is frozen due to a sufficiently large β, so that Y = 1 and θ = 0 as
x → −∞. Far to the right all properties are assumed uniform and ∂Y /∂x = ∂θ/∂x = 0 as x → ∞.
The symmetry condition along the axis of the channel implies that

∂Y

∂y
=

∂θ

∂y
= 0 at y = 0 (4)

and the conditions corresponding to impermeable and non-adiabatic walls are

∂Y

∂y
= 0,

∂θ

∂y
= −kθ

β
at y = 1 (5)

where k/β measures the intensity of the heat loss by conduction (the insertion of the scaling factor β
has been made simply for convenience). k = 0 corresponds to adiabatic walls and k = ∞ to cold walls
held at the same temperature as that of the fresh gases.

The unsteady problem consisting equation (1)-(2) with the stated boundary conditions has been
solved numerically, starting with arbitrary initial data. The computations were carried out in a finite
domain on a rectangular grid, uniform in y but variable in x with more points distributed near the
reaction zone location. Typically 200 × 40 points were used in the x, y directions respectively. The
number of points were doubled in order to test the independence of the calculations to that choice
as well as to the length of the domain. An explicit marching procedure was used with first or fourth
order discretization in time. The presence of the reaction rate requires the time step to be chosen
sufficiently small so as to ensure numerical stability. The propagation speed U(t) has been determined
at each time step by holding the location (x∗, 0) where Y = Y∗ with the value Y∗ chosen so that x∗
well approximates the location of the reaction zone.

The results presented here use the moderate values β = 10 for the Zeldovich number. For this value
of β, the laminar flame speed SL differs from the asymptotic value used in the nondimensionalization.
Velocities thus have been re-normalized using the calculated steady propagation speed U = 0.918
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Figure 1: Reaction rate contours for adiabatic
walls with unity Lewis number (ε = 0.1).
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Figure 2: Reaction rate contours for non-
adiabatic walls (k = 8) with unity Lewis number
(ε = 0.1).

obtained for an adiabatic (k = 0) wide channel (ε = 0.1) with unity Lewis number and no flow
(u0 = 0). Thus, the value 0.918SL constitutes the reference speed, in agreement with [2].

Fig. 1 shows representative calculations for the adiabatic case k = 0 and unity Lewis number. This
case corresponds to a wide channel, ε = 0.1. The curves in this figure correspond to reaction rate
contours. In the absence of a flow (u0 = 0) the flame is planar and propagates to the left at a speed
U = 1 (after the renormalization). When the flow is directed from the unburned towards the burned
gas (u0 > 0), the flame is curved and for u0 = 1 it propagates to the left at a speed U = 0.53. This case
corresponds to flame flashback. At higher speeds the flame is blown-off, propagating to the right with
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Figure 3: The propagation speed U as function of time for two values of the Lewis number. The top figure
corresponds to Le = 3.5 and the bottom figure to Le = 3.6. Calculated for k = 0 and ε = 0.5
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Le = 3.5 Le=3.6 Le=4.0
ε = 0.1 U = 0.84 A = 0.16, ω = 5.5, < U >= 0.83 A = 1.0, ω = 5.4, < U >= 0.79
ε = 0.5 U = 0.84 A = 0.23, ω = 1.1, < U >= 0.83 A = 1.0, ω = 1.1, < U >= 0.79
ε = 1.0 U = 0.84 A = 0.22, ω = 0.55, < U >= 0.83 A = 1.0, ω = 0.54, < U >= 0.79

Table 1: Numerical results for selected ε and Le with u0 = 0 and k = 0. Here A, ω and U represent
respectively the amplitude, frequency and propagation speed, and < U > is the average propagation
speed of the pulsating flame.

U < 0. When the flow is directed from the burned towards the unburned gas, the flame is always blown
off by the flow and, for u0 = −1, propagates to the left at a speed U = 1.94. Figure 2 shows similar
results but in the presence of conductive losses at the walls with k = 8. We note that even without a
flow the flame is curved and is more sensitive to heat losses when it propagates against the flow. As
a result of the conductive losses at the walls, the reaction intensity weakens there and a dead-space
(clearly seen when u0 = 1) develops.

Concerning flame oscillations, we first compare our predictions with previously known results. For a
wide channel (ε = 0.1) and no flow (u0 = 0) our calculations show that the critical Lewis number under
adiabatic conditions is Lec ≈ 3.6, and this compares well with the value 3.58 obtained in [2] for planar
unbounded flames. For adiabatic walls this result appears insensitive to the channel’s width. Fig. 3
shows the propagation speed as a function of time for the two values Le = 3.5 and 3.6 with ε = 0.5.
In the first case, the flame is seen to reach a steady-state with U → 0.84 as t → ∞; in the latter
a limit cycle develops and pulsating propagation occurs with the flame moving at an average speed
< U >= 0.83. By further increasing the Lewis number for a given channel width the mean propagation
speed decreases, the amplitude of oscillations increases while the frequency ω remains nearly constant,
see Table 1. It should be noted, however, that the propagation speed has been scaled with respect
to SL ∼

√
Le. Therefore, in dimensional form the propagation speed which increases with increasing

Le up to the onset of oscillations, decreases slightly (on the average) near the bifurcation point and
then continues to increase but at a very slow rate. Finally, comparing the results for wide and narrow
channels, we see that in narrow channels the critical Lewis number Lec remains nearly the same and,
for a given Le, the mean propagation speed and the frequency of oscillations (in dimensional form)
remain nearly constant.
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Figure 4: Critical Lewis number Lec plotted as a function of channel width for k = 0 and u0 = −1.
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As expected, conductive heat losses lower the critical Lewis number Lec. More significantly, however,
is the effect of convection and of the channel’s width on criticality. This is shown in Fig. 4 where Lec

has been plotted as function of 1/ε, which is proportional to the channel width, for the case k = 0 and
u0 = −1. We note that oscillations are more likely to occur in wide and narrow channels, since Lec

in both cases are relatively low and accessible when appropriately diluting the combustible mixture.
Oscillations are less likely to occur in channels of moderate widths where the predicted Lec is large
enough and outside the range of common combustible mixtures. These results extend to the case with
u0 = ±1 and when heat losses are present.
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