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The feedback of a propagating diffusive (pre-mixed
combustion) flame on a fluid, and the consequences for
the flame, is of considerable interest in many areas of re-
search. In our case, we have been motivated by the prob-
lem of the speedup of nuclear reaction fronts of this type
in the interior of white dwarf stars, which is thought to
be one possible way that such stars undergo thermonu-
clear disruption, e.g., a Type Ia supernova (cf. [1–6]).
It is usual in this field to focus on the speedup of such
flames for prescribed flows, with substantial recent ad-
vances [7]. For this “kinematic” problem, the goal is
rigorous limits on flame speedup in the case in which
there is no feedback onto the flow. The Type Ia super-
nova problem demands more than this, however: hence,
we report progress on studies of the simplest case of feed-
back, namely that which occurs when a flame propagates
vertically, against the direction of gravity. It is gener-
ally believed that under such circumstances, the flame
front is likely to become distorted by Rayleigh-Taylor
instability, and thus achieves speedup; previous calcula-
tions have been largely illustrative, and based upon fully-
compressible fluid dynamics model (e.g., [8]) and fairly
realistic nuclear reaction networks. Our approach instead
looks at a much simpler problem, in which these “realis-
tic” complexities are simply removed; the motivation is
to strip the flame speedup problem to its bare essentials.
For this reason we have studied flames in the Boussinesq
limit and for highly simplified reaction terms; thus, we
isolate the various effects which lead to flame speedup
in the astrophysical context, allowing us to connect such
simulations to extant analytical work (e.g., [7, 9, 10]),
and to elucidate simple scaling laws (which suggest fur-
ther analytical studies). Here we briefly describe some of
our main results, details of which can be found elsewhere
[11].

Our starting point is the coupled set of Navier-Stokes
and advection-diffusion-reaction equations, written in the
Boussinesq limit,

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇p + µ∇2v + ρg,

∂T

∂t
+ v · ∇T = κ∇2T + R(T ), (1)

∇ · v = 0,
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where v is the fluid velocity and, without loss of gener-
ality, the temperature T has been normalized to satisfy
0 ≤ T ≤ 1. The thermal diffusivity κ and viscosity µ are
assumed to be temperature-independent, and density (ρ)
variations are assumed to be small enough to be described
by the Boussinesq model, e.g., ρ(T ) = ρ◦ + (∆ρ/ρ◦)T .
In the spirit of maintaining simplicity, we consider a re-
action term of Kolmogorov-Petrovskii-Piskunov (KPP)
type [12], of the form R(T ) = αT (1 − T )/4 , where α
is the (laminar) reaction rate. This reaction form has
an unstable fixed point at T = 0, the “unburned” state,
and a stable one at T = 1, the “burned” state. Thus
a fluid element with positive temperature will inevitably
evolve to the burned state in a characteristic time of order
1/α. As is well-known from the combustion literature,
the temperature equation from the system above admits
— for a stationary fluid, and in the absence of gravity —
one-dimensional solutions in the form of burning fronts
propagating with laminar burning speed s◦ =

√
ακ, and

with characteristic flame thickness δ =
√

α/κ. If it is
further assumed that T → 1 as y → −∞, and T → 0
as y → +∞, then the front propagation is in the posi-
tive y direction. If the front thickness δ and the inverse
reaction rate α−1 are put as the units of distance and
time, respectively, the problem control parameters are
the Prandtl number Pr = ν

κ
and the non-dimensional

gravity G = g
(

∆ρ
ρ◦

)

δ
s2
◦

, where ν is a kinematic viscosity

ν = µ/ρ◦. In addition, the system is characterized by a
number of length scales specifying the initial state, which
are in our case the dimensionless amplitude A = a/δ and
the dimensionless wavelength L = l/δ of the initial flame
front perturbation, f(x) = a cos(2πx/l), The vertical size
of the computational domain was kept large so as to avoid
effects due to the upper and lower walls of the computa-
tional box; in all cases, we have verified that such arti-
facts are not present. For this reason, the box height does
not enter as a problem parameter. The initial velocities
are set to zero, and most computations were carried out
for Pr = 1. The resolution of the simulations was chosen
to fully resolve the laminar flame structure, as well as
both the diffusive and viscous scales; for the KPP reac-
tion term, the laminar flame thickness is approximately
12 δ, the grid spacing ∆x = ∆y = 1 (in the units of δ),
and the domain size up to 512 × 4096 for most compu-
tations. A typical initial state of our flame calculation is
shown in Fig. 1. (Details regarding the simulations them-
selves can be found in [11].) Our central interest will be
in disentangling the dependence of the flame behavior on
the key control parameters of the problem.
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FIG. 1: A typical initial state of a flame calculation.

For a wide range of parameters, we can observe trav-
eling waves of the temperature distribution, propagat-
ing with constant speed. Depending on simulation pa-
rameters, the initial perturbation either damps (e.g., the
flame front flattens) or forms a curved front. The flat
front moves in the motion-free (in the Boussinesq limit)
fluid, has laminar front structure, and propagates with
the laminar front speed. A typical curved front is shown
in Fig. 2; it has the wavelength of the initial perturba-
tion and is characterized by narrow dips (lower apexes),
where the cold fluid falls into the hot region, and by wide
tips (upper apexes), where buoyant hot fluid rises into
the cold fluid. In the initial stages, the evolution pat-
tern is similar to bubble and spike formation during the
Rayleigh-Taylor instability [14, 15]; but in later stages,
small scale structures are consumed by the flame, and,
finally, the flame evolves toward the travelling wave so-
lution shown in Fig. 2. The shape of the stable front is
determined by gravity, G, and wavelength, L, and can
be characterized by two vertical length scales associated
with the spatial temperature variation (hT ) and the spa-
tial velocity variation (hV ) of the flame. The speed of
the curved front is always higher than the laminar flame
speed, because of the increase in the flame front area
and transport. Finally, we notice that the streamlines in
Fig. 2 indicate that the flow underlying the propagating
flame is characterized by rolls propagating upward.

One of our primary interests is to quantify the ef-
fects of variations in wavelength and gravity on the
flame speed. It is convenient to define the speed of
the travelling wave flame by the bulk burning rate [7],

s(t) = 1
l

∫ l

0
∂T (x,y,t)

∂t
dx dy ; this definition has the con-

siderable advantage that it reduces to the standard defi-
nition of the flame speed when the flame is well-defined,
and it is accurate to measure even for cases where the
burning front itself is not well-defined. Henceforth we
refer to it simply as the flame speed.

Our first result (shown in Fig. 3) is that the flame
speed increases with wavelength L and with the gravi-
tational acceleration G, and is independent of the initial
perturbation amplitude A. More specifically, the flame
becomes planar and moves at the laminar speed (s = s◦)
if G is smaller than some critical value Gcr; if G lies above
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FIG. 2: Travelling wave isotherms (T = 0.1 and T = 0.9) and
streamlines for two system with different simulation parame-
ters. Note that the system on the right has been rescaled by
a factor of 1/4 both horizontally and vertically.

1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2
1

2

3

0 1 2 3 4

s/
s o

G

L = 128
L = 64

L = 48

L = 32

L = 24

L = 16

s/so = [ 1 + 0.0486 L (G-G1) ]1/2

FIG. 3: Bulk burning rate (travelling wave speed) s as func-
tion of wavelength L for different values of gravity G.

this critical value, the flame speed can be fit by the ex-
pression, s = s◦

√

1 + k1(G − G1)L , where k1 ≈ 0.0486
is obtained from measurements derived from the sim-
ulation data. The second tuning parameter, G1, was
found to be a function of the perturbation wavelength
(Fig. 4), G1 = 8(2π/L)1.72. For a relatively wide range of
parameters, this expression describes experimental data
well, but must be applied with caution near the cusp at
G = G1 shown in Fig. 3. Roughly speaking, this cusp
can be interpreted as the transition between the planar
and curved flame regimes, G1 ≈ Gcr; closer investigation
of the transition region shows that Gcr < G1, and that
the fit (Fig. 3) underestimates the flame speed in this
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transition region (Fig. 5).
The behavior near the transition is discussed in de-

tail by Berestycki, Kamin & Sivashinsky [10], who derive
the one-dimensional evolution equation for the front in-
terface y(x) and prove the following properties of y(x),
relevant to our case: (1) the existence of Gcr ∼ (2π/L)2

such that there is no nontrivial solution for G < Gcr

(i.e. the front is flat for G < Gcr); (2) the existence of
Gcr

∗ = 4Gcr such that for G > Gcr
∗ there are two sym-

metrical (curved) solutions y+(x) and y−(x) which are
stable, and any other solution including the trivial is un-
stable; (3) metastability of any solution except y+(x) and
y−(x) in the range Gcr < G < Gcr

∗, and convergence of
this metastable solution to either y+(x) or y−(x). Also,
based on the derivation in [10], it can be shown that the
flame speed in the metastable regime scales as follows
[16], (s/s◦ − 1) ∝ (G − Gcr)

2 as (G − Gcr) → 0 . Our
simulations confirm the dramatic increase of stabilization
times close to the critical gravity value Gcr. For this rea-
son, it is very difficult to obtain reliable results regarding
the flame speed in this transition regime. Even detecting
the critical point takes significant computational effort
(Fig. 5); measuring the velocity, which in this param-
eter regime differs from s◦ by a very small amount, is
harder still. However, the transition is sharper and is
easier to see when studying the vertical distance between
the upper and lower apexes of the flame, hT , measured
by the expression, hT =

∫ ∞

−∞
(T (0) − T (l/2))dy . In the

limit of large wavelengths (L � 1), the transition occurs
at small values of gravity, and the flame speed is deter-
mined by a single parameter, the product LG. If, in
addition, the product LG is large, the flame speed scales
as s/s◦ ≈ 0.22

√
LG. This result is in good agreement

with the rising bubble model [17] which, in the Boussi-

nesq limit, predicts s/s◦ =
√

LG/6π ≈ 0.23
√

LG for a
2-D open bubble [18]. We further observe that in the
large wavelength limit, the hT /l ratio obeys the same
scaling (Fig. 5).

We note that the flame structure shares features of
flame propagation from both shear and cellular flow. For
instance, the temperature distribution closely resembles
that of a flame distorted by a shear flow, while the ve-
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FIG. 4: Transitional point G1 as a function of wavelength.
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FIG. 5: Amplitude of the stable front as function of gravity
for the wavelength L = 32. The scaling relations shown here
are discussed in the text.

locity distribution resembles that inside an infinitely tall
cell. The flame speed in the shear and cellular flow is
determined by the flow speed and by the length scale of
the flow (period of shear or cell size) [19]. In particu-
lar, in both cases the flow speed scales with maximum
flow velocity as s ∝ vn

max, with n = 1 for burning in
the shear flow and n = 1/4 for burning in the cellular
flow. Similarly, we have tried to determine whether the
flame speed relates to the maximum velocity of the flow
when flow and flame are coupled through the Boussi-
nesq model. The available data (shown in Fig. 6) do not
demonstrate a power law dependence with a single well-
defined power. Furthermore, the dependence on L is not
as dramatic as in the cases of shear or cellular flows.

To summarize, we have studied the fully nonlinear be-
havior of diffusive pre-mixed flames in a gravitationally
stratified medium, subject to the Boussinesq approxima-
tion. Our aim was both to compare our results for a
viscous system with analytical (and empirical) results in
the extant literature, and to better understand the phe-
nomenology of fully nonlinear flames subject to gravity.
The essence of our results is that there is an extended
regime for flames with finite flame front thickness for
which the scaling on the LG product applies (as it is
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FIG. 6: The flame speed as function of maximal flow velocity.
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known to do in the thin flame front limit).
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[8] Röpke, F.K., Hillebrandt, W., & Niemeyer, J.C., astro-

ph/0204036 (2002).
[9] Audoly, B., Berestycki, H., & Pomeau, Y., C.R.Acad.

Sci., Ser. IIB 328, 255 (2000).
[10] Berestycki, H., Kamin, S., & Sivashinsky, G., Interfaces

and Free Boundaries 3, 361 (2001).
[11] Vladimirova, N., & Rosner, R., Phys. Rev. E, in press

(2003).

[12] Kolmogorov, A.N., Petrovskii, I.G., & Piskunov, N.S.,
Bull. Moskov. Gos. Univ. Mat. Mekh. 1 (1937), 1-25 (see
[20] pp. 105-130 for an English translation).

[13] Young, Y.-N., Tufo, H., Dubey, A., & Rosner, R., JFM,
447, 377 (2001).

[14] Chandrasekhar, S., Hydrodynamic and Hydromagnetic

Stability, Clarendron Press, Oxford, (1961).
[15] Landau, L.D., & Lifshitz, E.M., Fluid Mechanics, 2nd

edition, Pergamon Press, Oxford, (1987).
[16] Kiselev, A., & Ryzhik, L., private communication.
[17] Bychkov, V.V., & Liberman, M.A., Physics Reports 325,

115 (2000).
[18] Layzer, D., ApJ, 122, 1 (1955).
[19] Vladimirova, N., Constantin, P., Kiselev, A., Ruchayskiy,

O., & Ryzhik, L., physics/0212057 (2002).
[20] Dynamics of Curved Fronts, Pelcé, P., Ed., Academic
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