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As is well known, in order to ensure detonative or deflagrative combustion in a confined 
or obstacle-laden system its effective (hydraulic) diameter should exceed a certain critical 
value, quenching diameter. Since the propagation mechanisms of detonations and 
deflagrations are of an essentially different nature, there is no reason to expect that their 
quenching diameters will coincide. Indeed, it has long been observed that the quenching 
diameters for detonations are generally larger that those of deflagrations, i.e. there are tubes 
wide enough to allow for deflagrations but not detonations [1, 2]. A simple model 
reproducing the effect in the context of subsonic porous bed combustion has recently been 
proposed [3]. In this system, due to the strong hydraulic resistance, the pressure-driven wave 
spreads at a fast yet subsonic velocity [4-8]. The disparity between the quenching diameters is 
explained in terms of the disparity between the associated reaction times, � ~exp(E/RT). In the 
pressure-driven regime, �  is controlled by the relatively low temperature at the entrance to 
the reaction zone rather that its exit, as occurs in deflagrative combustion [5-8]. This makes 
the pressure-driven wave more vulnerable to heat losses. A similar effect is expected to take 
place also for conventional supersonic detonation where �  is controlled by the post-shock 
(Neumann) temperature which is normally lower than its deflagrational counterpart. The 
objective of the current study is a more systematic exploration of this question. The results 
obtained show that the post-shock and flame temperatures are not the only factors controlling 
the quenching diameters disparity. The latter is also affected by the change in the resistance 
law in the transition from deflagrative to detonative propagation, as well as by the magnitude 
of the pre-exponential factor in the Arrhenius kinetics. As a consequence a situation may arise 
where the quenching diameter of detonation exceeds that of deflagration. The latter picture is 
favored by the systems with relatively low activation energies and high pre-exponentials. 

The problem is analyzed within the framework of a quasi-one-dimensional formulation 
for the reactive flow in a smooth-walled tube. The impact of walls is modeled through a drag-
force and heat-loss terms added to the momentum and energy balance equations. In the frame 
of reference attached to the advancing wave the set of governing equations reads, 
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Here D is the propagation velocity in the laboratory frame of reference, � � 70
00

.TT����  is the 

dynamic viscosity, where the subscript (0) pertains to the initial state of the mixture; � �
RTECAW �� exp2	  is the reaction rate, defined by a one-step non-stoichiometric 

bimolecular Arrhenius kinetics; A is the pre-exponential factor; d/uuCf f
	2� , 
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 	�  are the terms controlling the momentum and heat 

losses, respectively; d is the hydraulic diameter; �  is the momentum-heat-loss similarity 
factor; fC  is the hydraulic resistance factor depending on the Reynolds number; �	 duRe � . For smooth tubes considered in this study 1��  (Reynolds analogy). For 

deflagrative and detonative propagation 116 
� ReC f  and 4131640 /
f Re.C 
� , respectively. 

The wave is assumed to propagate through an initially quiescent homogeneous mixture 
where temperature, pressure, density and the deficient reactant concentration are regarded as 
prescribed. Hence the upstream boundary conditions are  
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Far behind the wave, because of the flow deceleration and the reactant consumption 
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In detonative combustion the effects due to molecular transport normally may be 

ignored everywhere except for h, f  terms depending on the Reynolds number.  
The emerging eigen-value problem for the propagation velocity D is solved along the 

lines of the classical Zeldovich analysis of non-ideal detonations [9], and its recent extensions 
based on the activation energy asymptotics [10-13]. At high activation energies the bulk of 
the chemical heat release occurs in a thin reactive layer located at a certain distance behind 
the shock. One thus ends up with the so-called square-wave model allowing analytical 
treatment. The resulting expression for the quenching diameter reads, 
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Here CJ,NT  is the post-shock (Neumann) temperature in the ideal CJ-detonation, 0a  is the 

sonic velocity at the initial temperature 0T . F is the nondimensional factor depending on 

specific-heat ratio vp cc� and CJ,N0N TT�! .  

In deflagrative propagation, since D<<a0, one may ignore dynamic compressibility as 
well as the inertial and viscous dissipation effects in the energy equation (3). The 
conventional high activation-energy analysis [14] then leads to the following expression for 
the quenching diameter, 
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Here pP cQCTT 00 "�  is the adiabatic temperature of combustion products. G is the 

dimensionless factor depending on the Prandtl and Lewis number ( LePr, ) and PP T/T0
�! . 

Eqs. (7), (8) readily imply that since CJ,NP TT # , q
detd  will exceed q

dfld  , provided the 
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activation energy is high enough. The effect is enhanced by the transition from laminar to 
turbulent resistance law introducing the factors 4/5 and 1/2 in the exponentials of Eqs.(7), (8). 
If in the detonative combustion the developing flow would be laminar, 4/5 should be replaced 
by 1/2 preserving but weakening the effect. Yet, if the pre-exponential A is high enough then 
at relatively low activation energies the picture inverts yielding wider detonability limits. 
There is a range of tube diameters where the mixture a capable of supporting detonation but 
not deflagration. 
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Figure 1. Quenching diameter qd  (mm) vs scaled activation energy 0RT/E . Solid and broken 

lines correspond to deflagrative and detonative regimes, respectively. 
 
 

Figure 1 plots q
dfld  and q

detd  dependencies on the scaled activation energy 0RT/E , calculated 

for a set of parameters suggested by the data on the ethylene-air mixture [15]: 
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The high-activation-energy limit and other assumptions underlying Eqs. (7), (8) make 
the above conclusions more of a qualitative guide than a quantitative prediction. It is therefore 
desirable to conduct direct numerical simulations of the original model (1)-(4) dealing with 
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the distributed reaction rate and accounting for the molecular transport and inertial effects 
both in deflagrative and detonative regimes. 
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