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Periodic forcing of chemical processes, as a means to obtain better average performance (in terms 

of yield, selectivity, conversion) compared to steady-state operation, has been a widely studied subject for 

a long time (e.g. Bailey, 1973; Matros and Bunimovich, 1996). Particularly, in the last 30 years, the real 

advantages of forced unsteady-state operation over conventional steady-state regimes of catalytic fixed-

bed combustors have been widely supported also experimentally. For such reactors, dynamic regimes are, 

in many cases, induced by periodically reverting the flow direction while keeping constant feed 

temperature and composition. For such kind of reactor, named "Reverse Flow Reactor" (RFR), the 

desired regime is a periodic regime with the same period of the forcing action. However, for certain 

values of design or operation parameters, a much richer dynamics exists, with multi-periodic, quasi-

periodic and chaotic regime solutions. This was found for instance in tubular catalytic fixed-bed 

combustors (Rehácek et al., 1992, 1998; Khinast et al., 1998).  

In order to properly design and control periodically forced reactors, it is necessary to accurately 

describe all the regime conditions when relevant design and operation parameters are changed. The most 

comprehensive approach to accurately describe changes in stability and nature of regime solutions is the 

systematic application of bifurcation analysis and of continuation techniques. This approach would be 

able to characterise all the periodic regimes of these reactors including non-stable regimes such as saddle-

type limit cycles (e.g. Doedel 1997; Kuznetsov 1998).  

The main difficulties of this approach for RFRs are the non-autonomous nature of the models and 

the presence of a discontinuous forcing. In fact standard and popular codes for automatic continuation, 
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such as for example AUTO (Doedel et al., 1997), CONTENT (Kuznetsov et al., 1996), can be easily 

applied only to autonomous continuous and discrete systems. 

In this work we conduct the bifurcation ana lysis of periodically-forced systems with 

time-discontinuous forcing as for reverse flow reactors (RFRs). The technique introduced is based on the 

application of pseudo-arclength continuation methods to the Poincaré map P obtained numerically 

(Mancusi et al., 2002; Russo et al.; 2002). This method can be applied to a generic periodic system with 

one o more discontinuities in the mathematical model. The proposed technique permits the continuation 

of all T-periodic and kT-periodic regimes and also allows to trace out the loci of bifurcation points in a 

two-parameter space.  

A tubular catalytic combustor 

The two-phase model of the fixed bed catalytic reactor is essentially the one studied earlier by 

Rehácek et al. (1992, 1998). The model considers heat and mass transfer between the gas and the 

solid-phase, axial dispersion in the gas-phase and axial heat conduction in the solid-phase and cooling 

through the reactor wall. For simplicity, a constant effectiveness factor and a pseudo steady-state for the 

mass balance in the solid phase are assumed (Cittadini et al., 1999). The dimensionless mass and heat 

balances, considering first order reaction on the solid catalyst phase, are in the form: 
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Conventional Danckwerts boundary conditions are assumed for concentration and temperature in the 

gas-phase. Model details are found in Mancusi et al. (2002). Figure 1 reports the solution diagram 



obtained by varying the switching time τ . In these diagrams, filled squares represent Neimark-Sacker 

bifurcation points and filled triangles represent flip bifurcations. 
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Figure 1 – (a) Solution diagram for τ as the bifurcation parameter. The state is represented by the outlet 
temperature ( ,g outϑ ) in the gas phase at the inversion time τ for symmetric regimes and at time T for 
asymmetric regimes. (b) Solution diagram of a 6T-periodic asymmetric subharmonic regime for τ as the 
bifurcation parameter.  

 
Starting from low values of τ , the symmetric solution (see Russo et al., 2002) is stable until a 

pitchfork bifurcation (P1) is met. By further increasing the inversion period, another pitchfork bifurcation 

(P2) is encountered and the unstable symmetric solution regains stability. Two unstable branches of 

asymmetric periodic regimes emerge from the subcritical pitchfork bifurcation P1. On these branches a 

fold bifurcation (F1) is first encountered, then, through a Neimark-Sacker bifurcation (N-S1) these 

asymmetric regimes become stable. Again, the two G-conjugate asymmetric regimes experience the same 

bifurcations. Finally these regimes merge and disappear with a supercritical pitchfork bifurcation (P2). 

As it is observed in Fig. 1(a), a wide interval of the bifurcation parameter τ  exists, in which there 

are no stable T-periodic regimes. In this range, chaotic, quasi-periodic and kT-periodic subharmonic 

regimes are found. It is interesting to test the capability of the proposed technique in constructing solution 

branches for kT-periodic subharmonic regimes for a dynamical system of relatively high dimension. To 

this aim, the case of a 6T-periodic subharmonic regime, earlier described by Rehácek et al. (1998), is 

chosen. As a result of the analysis, an even more complex dynamic behaviour, with multistability, is 

found. By continuation of the 6th iterate of the Poincaré map the solution diagram was obtained and 

reported in Fig. 1(b). Particularly, Figure 1(b) reports a typical isola of periodic behaviour with resonant 



regimes (frequency- locking). This window is bounded by saddle-node bifurcations (F1 and F2). On the 

stable branches, the system exhibits, as the bifurcation parameter is increased, a Neimark-Sacker (N-S in 

the figure) and two flip (PD1 and PD2) bifurcations. In this case the two flip bifurcations can exist 

because the regimes are asymmetric.  

Concluding remarks and future developments 

The technique presented permits to implement a pseudo-arclength continuation method to analyse models 

of periodic systems with one or more discontinuities in the governing equations. Thus it is possible to 

conduct an accurate bifurcation analysis and to characterise resonant solutions by constructing solution 

diagrams and bifurcation diagrams. The latter permit to identify regions of existence of frequency- locking 

isolae by determining Arnold angles.  

At present, the analysis is demanding in terms of computer time. Constructing Fig1b on an ALPHA 

STATION 666 Mhz took about 250 hours, 85% of which were used to compute the Poincaré map by 

means of LSODE routines. Parallelisation of the integration process of the ordinary differential equations 

is the objective of ongoing work. 
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