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Introduction 

When a combustible mixture is formed and ignited during an accident, the consequences strongly depend on the 

ability of the flame to accelerate, resulting in supersonic deflagrations and detonations. Many practical cases 

involve accidental releases of flammable gases into a partially vented, partially confined geometry. These cases 

are relatively less understood compared to combustion events in a confined geometry, where flame acceleration 

(FA) and deflagration-to-detonation transition (DDT) were studied extensively (see, e.g. [1-4]). Studies of 

gaseous explosions in vented tubes can be considered as a bridge between cases of explosions in closed tubes 

and cases of unconfined explosions in congested areas. The critical conditions for FA and DDT in tubes with 

lateral venting were investigated in the recent study by Alekseev, et al. [5]. The present work is a continuation of 

the study [5]. It is focused on the effects of vent geometry and fuel type (H2, CH4, C3H8) on FA and DDT in a 

vented tube surrounded by either air or combustible mixture.  

Experimental 

Two different types of experiments were made. In the first one, flame propagation was studied in a vented tube 

surrounded by air (Configuration 1, Fig. 1). In the second one the same tube was surrounded by a combustible 

gas (Configuration 2, Fig. 2). The explosion tube was 4.6 m long with an internal tube diameter of 0.1 m and 

with a blockage ratio (BR) of the orifice plates of 0.6. The venting was provided by a set of rectangular orifices 

in the cylindrical surface of the tube. These orifices were partially closed by rotating brackets fixed on the outer 

surface of the tube. The angle of rotation was varied from 0° (closed tube) to 40° (the ratio of the vent area to the 

total area of cylindrical surface, α = 0.43). The venting was arranged in two different ways: either all brackets 

were opened by the same angle (vent 1), or every second orifice along the tube was closed (vent 2). In 

Configuration 2 the vented tube was placed into a thin plastic bag filled with the same combustible mixture as 

inside the tube. Hydrogen-air, methane-air, and propane-air mixtures were used in the test. A weak electrical 

spark was used to ignite the mixtures at one end of the tube. Fast response piezoelectric pressure transducers and 

photodiodes were used to measure pressure and flame time-of-arrival. 
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Figure 1: Experimental set-up in Configuration 1. 

 
 

Figure 2: Experimental set-up in Configuration 2 

Summary of Results 

Four typical flame propagation regimes were observed in the tests (see left graph of Fig. 3 as an example). The 

first one is essentially subsonic. In the second regime the flame propagates at a speed that is slightly higher than 

the sound speed in reactants. If the venting is relatively small compared to the blockage provided by the orifice 

plates, the flame can propagate at a speed close to the sound speed in the products, or transition to detonation can 

be observed. The possibility for a fast flame to propagate in a vented tube with two characteristic values of the 

flame speed (in addition to quasi-detonations) is a new feature revealed in the present tests. This effect was not 

observed in [5], where relatively large vent ratios were used.  
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While fast supersonic regimes were observed for a range of the vent ratios in hydrogen mixtures, flames in 

methane and propane mixtures were very sensitive to the vent ratio. A very small venting with the vent ratio of 

about 0.025 was sufficient to suppress supersonic flame propagation in methane and propane mixtures. This is 

illustrated by the right part of Fig. 3.  
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Figure 4. Ratio of the critical expansion ratios in vented and closed tube versus vent ratio. 
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Figure 5: Flame speed inside the tube versus distance 
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