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There has been a recent surge of interest in the combustion of gaseous mixture within porous 

inert media [1, 2]. Flames stabilized within the porous matrix have higher burning speeds and 
distinct flammability limits than of open flames. There is a number of possible explanations of the 
phenomenon, namely: internal feedback of heat from the burned gases to unburned ones through 
radiative heat transfer, conventional heat conduction through a solid skeleton, diffusion of a heated 
gas because of a local pressure elevation, etc. We will focus on the last: a local pressure elevation.  

Conventional approach to flame propagation modelling in open air ignores the pressure 
perturbations. It is reasonable because the flame propagation velocity in open air is significantly 
lower then the sound speed. This conclusion is not correct for gaseous combustion processes in inert 
porous media, because (for comparatively narrow pores) the speed of pressure perturbation may be 
significantly lower then the sound velocity in open air. Under such circumstances a local elevation 
of pressure may lead to a formation of the self-sustaining combustion wave controlled by pressure 
diffusion. 
  In the recent papers [2] this heuristic idea was converted into original model that describe a 
new physical mechanism of flames spreading through inert porous media. The model used an 
assumption that in comparatively narrow pores a propagation of combustion waves might be 
governed mainly by diffusion of pressure in porous media, rather then conventional heat transfer. 
The present paper continues the study in this direction and is concentrated on the impact of the 
inertia phenomena on the fine structure and main characteristics of the flame front. 
 Traditionally the study of the premixed gas flames in an open space makes use of asymptotic 
technique. In particular, a method of inner and outer asymptotics represents a powerful and 
effective tool for an analysis of the structure and velocity of flames in various media. Unlike the 
conventional deflagration, in pressure driven flame the temperature within reaction zone undergoes 
a nearly jumpwise increase, whereas the preheat zone is rather wide and the temperature growth 
relatively slowly in it. As a result the traditional multiple scale approach developed for analytical 
tackling of deflagrations meets here with formidable difficulties. The present piece of work is aimed 
to overcome this hurdle and to evaluate main characteristics of propagating flame. In this paper we 
demonstrate how a powerful method of integral manifolds (MIM) [3] can be successfully applied to 
relatively new field – problem of a pressure driven flame propagation through two-phase medium 
(inert solid skeleton filled with a flammable gaseous mixture). 

We will use a model suggested in [4]. We restrict ourselves to a one-dimensional approach 
presuming that it gives us a conceptual qualitative information about the main dynamical properties 
of the process. The porous medium is considered as a set of the evenly spread parallel capillaries of 
the same inner radius (so-called cell model), filled with premixed combustible gas mixture (the 
solid matrix is inert). The presence of the porous medium is accounted for by the friction force 
(velocity-dependent) added to the momentum equation. We presume that the friction force is an 
inner one, which does not affect the total energy balance of the system.  

To single out the pure impact of the pressure effect on the properties of self-sustained 
combustion wave driven by the local pressure elevation, the conventional mechanism of the 
combustion wave propagation (thermal diffusion) is regarded as negligibly small (compared with 
pressure diffusion – barodiffusion) and it is excluded from our consideration. Additionally, this 
allows us to simplify a mathematical description of the real extremely complex problem and to 
make it tractable analytically. Presumably, the approximated problem preserves most basic features 
of the originally full nonlinear system. 



 

- 2 - 

 Within the above premises, the system of governing equations contains energy (1), 
concentration (2), momentum (3), continuity (4), state (5) equations, and it reads  
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The following notations were used: T - temperature (K); P – pressure (Pa); E - activation energy 
(J/kmol); D – velocity of the flame front in the laboratory system of coordinates (m/s); C - 
concentration of the deficient reactant; c - specific heat capacity (J/kg/K); u - gas velocity in the 
laboratory frame of reference (m/s); Q - combustion energy (J/kg); W - reaction rate (kg/(s m3)); ���� - 
density (kg/m3); K- permeability of the medium (m2); ����  - kinematical viscosity (m2/s); A – pre-
exponential (frequency) factor (1/s); R - universal gas constant. Subscripts mean: f - combustible 
component of the gas mixture; p - under constant pressure; v- under constant volume; 0 - 
undisturbed state; b - burnt (behind the combustion wave front), F – related to the case of quadratic 
dependence of the friction force on gas velocity. The system (1)-(5) is subject to boundary 
conditions (fresh mixture far before the front of the flame) 
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The system (1)-(5) can be partially integrated and reduced to the form of the set of the two 
ODEs. A qualitative analysis of the reduced system using conventional methods is rendered 
extremely difficult due to the complexity of the right hand sides of the equations. Therefore, 
appropriate numerical procedures must be resorted to. Alternatively, the presence of the sufficiently 
different time scales raises the possibility of using some kind of asymptotic procedures. In the 
present piece of work, we exploit a powerful asymptotic technique, namely, a geometrical version 
of the integral (invariant) method (MIM) [3, 5, 7, 8]. The relevant mathematical background of this 
sort of analysis can be found in the theory of integral (invariant) manifolds [3, 7]. The MIM permits 
to decompose a phase-space analysis of an arbitrary multi-scale system into separate studies of its 
fast and slow subsystems. The advantage of this decomposition is that any subsystem has lower 
dimensions than the original one. Although numerical solution of the equations is straightforward, a 
general analytical parametric analysis of the system behaviour such as will be presented here, is 
unattainable by numerical means.  

To make the reduced system tractable by MIM, we need to introduce a pair of new variables 
to re-write the system in the form of singularly perturbed system of ODEs. A physical rationale 
lying behind a choice of the new dimensionless variables is rather simple. Along the lines of 
Zel’dovich approach [9], we can single out two qualitatively different sub-zones within the flame 
front, which are used to refer to as preheat and reaction ones. Each of the two sub-zones is 
characterized by its own unique feature. Within the preheat zone an input of the exothermic 
chemical reaction is assumed to be negligible, whereas the friction force plays a dominant role in 
the system dynamics. As a result, the system energy remains almost constant and we can interpret 
this fact as an existence of an approximate law of energy conservation in this sub-zone. On the other 
hand, the momentum of the system changes essentially within preheat sub-zone. Hence, one of the 
new variables (v) can be introduced as a deviation from the approximate law of the energy 
conservation (in the absence of reaction). Having determined a new variable v in such a way, its 
slow alteration within the preheat sub-zone is expected (with respect to momentum, for example). 
Unlike the preheat sub-zone, the reaction one can be typified by another approximate conservation 
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law - the system momentum conservation. Therefore, another new variable (u) can be chosen as a 
variation from this approximate law. On the basis of similar reasoning we expect that u is slow 
variable (with respect to energy or its modifications). 

Thus, there is a good reason to consider a flame configuration in the following way: within the 
preheat sub-zone to use the pair of the variables (v, w) (v – slow, w – fast), within the reaction sub-
zone - the pair (u, w) (u - slow, w - fast). This decomposition permits us to re-write the original 
system - as two separate systems for the different sub-zones of the flame. Each of these systems has 
the conventional form of singularly perturbed system of ODEs, which makes direct application of 
the MIM legitimate. 

The analysis of the system trajectory (solution) in the phase space is naturally subdivided into 
two parts. The first stage of the trajectory is analyzed in the plane v-w. It has a starting point Pin and 
represents the fast motion from the initial point in the direction to the attractive branch of the slow 
curve. The equation of the slow curve is determined by the RHS of the equation for the variable w. 
While the fast motion takes place the slow variable v conserves its initial value. The first stage ends 
when the trajectory approaches the slow curve (matching point Q, connecting the two parts of the 
trajectory). The second stage starts at this point (the repulsive branch of the manifold rejects the 
trajectory in the plane u-w) and moves in the direction of the singular (final) point Pfin. The slow 
variable u conserves the value obtained at the matching point Q. Only for a special value of the 
flame velocity �F  the trajectory can reach the singular (final) point Pfin (all other trajectories moves 
above or below the final point Pfin.). The matching point Q separating these two sub-zones plays the 
key role in the determination of the flame velocity and allows us to determine the details of the 
trajectory and to gain the expression for the flame velocity. 

The suggested approach allowed us to get the analytical estimation of the inertia effect on the 
flame velocity. The desired estimation represents a solution of the algebraic equation (7). 
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where the coefficients E0, E1, E3/2, E5/2 depend on the problem parameters. The equation (7) is an 
equation for inertia parameter �

inert and can be solved numerically. 
In the absence of the inertia, the flame velocity is proportional to the cubic root of the 

Arrhenius exponent, which coincides with our earlier results. The impact of the inertia grows with 
increasing of the flame velocity. The inertia influence becomes more important in the parametric 
region closer to the sound velocity in a fresh mixture. The theoretical predictions demonstrated 
rather good agreement with the direct numerical simulations. 

Figure 1 allows us to get a visual impression how the approximation built on the asymptotic 
approach (MIM) describes a real trajectory in the phase space. The figure is a projection of the real 
trajectory in the three-dimensional space 

�
-

�
-�  onto the (

�
-

�
) plane and the (

�
-� ) plane. The 

approximation PinQ of the preheat sub-zone corresponds to the stage PinW of the real trajectory, and 
approximation QPfin of the reaction sub-zone to the WPfin.  
  One can see that within the preheat sub-zone (

�
 in the interval 0-50) the energy of the system 

is almost constant – a difference between the two curves (theoretical and numerical) is not visible. 
Visually the pressure 

�
 is strictly proportional to the temperature 

�
. A discrepancy begins to be 

observable only in the vicinity of the matching point Q.  
  In a similar way one can ensure that the momentum of the system conserves its final value 
within the reaction sub-zone with rather good accuracy. We are hampered to distinguish two curves 
(solid and dashed ones) within the interval [70, 200] of 

�
 values. This testifies, that the suggestion 

made regarding approximate law of momentum conservation was rather reasonable. One can see, 
that the approximation looks reasonable and the most discrepancy is observed in the region of the 
matching point Q. 
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Figure 1. Projection of the system real trajectory on the planes � -

�
 (left) and � -�  (right). Solid line PinWPfin 

– result of numeric simulations, dashed lines PinQ2 (preheat zone) and Q2Pfin (reaction zone) – our 

approximations. The system parameters read: 23.0;1043.6;3.1;0295.0 6
1 ����� � ����  

66667.5q;1035.4 8
2 ��� �� . The dimensionless flame velocity (used for dashed trajectory, 

numerical data) is 42.1F ��  the dimensional one is D=72.1 m/s. 

 
Finally, we note that although the presented application of the modified MIM approach to the 

model of the pressure driven flames in porous media does provide a broader more accurate 
perspective than that previously obtained with non-inertial models, it is not without its own 
deficiencies. It is indisputable that a more realistic description should ideally include one or more 
additional effects: the wider region of the flame velocities (inertia impact is expected to be larger), 
thermal diffusion (conventional mechanism of flame propagation), more details of the chemistry 
such that initiation of the chemistry via a radical pool can be accounted for, etc. These directions of 
further improvement of our model are currently under investigation. 
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