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There has been a recent surge of interest in the combustion afugasexture within porous
inert media [1, 2]. Flames stabilized within the porous matrix hhigher burning speeds and
distinct flammability limits than of open flames. There is a raenof possible explanations of the
phenomenon, namely: internal feedback of heat from the burned gases to unboasethrough
radiative heat transfer, conventional heat conduction through a solid aketBtfusion of a heated
gas because of a local pressure elevation, etc. We will focus on the last: a lesstlig elevation.

Conventional approach to flame propagation modelling in open air ignorepressure
perturbations. It is reasonable because the flame propagation valo@pen air is significantly
lower then the sound speed. This conclusion is not correct for gaseous combustiosgsac@sert
porous media, because (for comparatively narrow pores) the speed sdifgr@erturbation may be
significantly lower then the sound velocity in open air. Under suchuorstances a local elevation
of pressure may lead to a formation of the self-sustaining contustave controlled by pressure
diffusion.

In the recent papers [2] this heuristic idea was converted inginai model that describe a
new physical mechanism of flames spreading through inert porous mEdeamodel used an
assumption that in comparatively narrow pores a propagation of combustweswmight be
governed mainly by diffusion of pressure in porous media, rather then coonahheat transfer.
The present paper continues the study in this direction and is coneehtratthe impact of the
inertia phenomena on the fine structure and main characteristics of the flame front

Traditionally the study of the premixed gas flames in an openespaakes use of asymptotic
technique. In particular, a method of inner and outer asymptotics repsese powerful and
effective tool for an analysis of the structure and velocity afrfes in various media. Unlike the
conventional deflagration, in pressure driven flame the temperatihenweaction zone undergoes
a nearly jumpwise increase, whereas the preheat zone is maitherand the temperature growth
relatively slowly in it. As a result the traditional multipkrale approach developed for analytical
tackling of deflagrations meets here with formidable difficudti&he present piece of work is aimed
to overcome this hurdle and to evaluate main characteristics of pabpgdlame. In this paper we
demonstrate how a powerful method of integral manifolds (MIM) [3} ba successfully applied to
relatively new field — problem of a pressure driven flame propagatinrough two-phase medium
(inert solid skeleton filled with a flammable gaseous mixture).

We will use a model suggested in [4]. We restrict ourselvea tme-dimensional approach
presuming that it gives us a conceptual qualitative information albeutniain dynamical properties
of the process. The porous medium is considered as a set of the spesady parallel capillaries of
the same inner radius (so-called cell model), filled with preedixxombustible gas mixture (the
solid matrix is inert). The presence of the porous medium is accduoteby the friction force
(velocity-dependent) added to the momentum equation. We presume thaictloa fforce is an
inner one, which does not affect the total energy balance of the system.

To single out the pure impact of the pressure effect on the propetfieself-sustained
combustion wave driven by the local pressure elevation, the conventiondlamsm of the
combustion wave propagation (thermal diffusion) is regarded as negligmall (compared with
pressure diffusion — barodiffusion) and it is excluded from our consiagerathdditionally, this
allows us to simplify a mathematical description of the redremely complex problem and to
make it tractable analytically. Presumably, the approximated erolpreserves most basic features
of the originally full nonlinear system.



Within the above premises, the system of governing equations contaiesgye (1),
concentration (2), momentum (3), continuity (4), state (5) equations, and it reads
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The following notations were used: T - temperature (K); P — pres¢Pa); E - activation energy
(J/kmol); D — velocity of the flame front in the laboratory systeof coordinates (m/s); C -
concentration of the deficient reactant; ¢ - specific heat dapét’kg/K); u - gas velocity in the
laboratory frame of reference (m/s); Q - combustion enerdg}JWV - reaction rate (kg/(s B); p-
density (kg/m); K- permeability of the medium (A); v - kinematical viscosity (ffis); A — pre-
exponential (frequency) factor (1/s); R - universal gas constaris@ipts mean: f - combustible
component of the gas mixture; p - under constant pressure; v- under monstame; O -
undisturbed state; b - burnt (behind the combustion wave front), F — rdtatbé case of quadratic
dependence of the friction force on gas velocity. The system (1)%ubject to boundary
conditions (fresh mixture far before the front of the flame)
T(X > +0)=Ty; C,(X > +x)=C,,; P(X > +0)=PF,; p(X = +x0) = p,; (6)

The system (1)-(5) can be partially integrated and reduced tdéotine of the set of the two
ODEs. A qualitative analysis of the reduced system using conventimedhods is rendered
extremely difficult due to the complexity of the right hand sidegfsthe equations. Therefore,
appropriate numerical procedures must be resorted to. Alternatitielyaresence of the sufficiently
different time scales raises the possibility of using some loh@&symptotic procedures. In the
present piece of work, we exploit a powerful asymptotic technique, lyameeometrical version
of the integral (invariant) method (MIM) [3, 5, 7, 8]. The relevant heahatical background of this
sort of analysis can be found in the theory of integral (invariarghiiolds [3, 7]. The MIM permits
to decompose a phase-space analysis of an arbitrary multisgstlam into separate studies of its
fast and slow subsystems. The advantage of this decomposition iarthatubsystem has lower
dimensions than the original one. Although numerical solution of the equasatiaightforward, a
general analytical parametric analysis of the system behagioctihn as will be presented here, is
unattainable by numerical means.

To make the reduced system tractable by MIM, we need to introdyzer af new variables
to re-write the system in the form of singularly perturbed eystof ODEs. A physical rationale
lying behind a choice of the new dimensionless variables is ratingples. Along the lines of
Zel'dovich approach [9], we can single out two qualitatively differeab-zones within the flame
front, which are used to refer to as preheat and reaction ones. Eatife divo sub-zones is
characterized by its own unique feature. Within the preheat zone an ofptite exothermic
chemical reaction is assumed to be negligible, whereas thefritorce plays a dominant role in
the system dynamics. As a result, the system energy reralimast constant and we can interpret
this fact as an existence of an approximate law of energy cortgaiva this sub-zone. On the other
hand, the momentum of the system changes essentially within pr&lieabne. Hence, one of the
new variables (v) can be introduced as a deviation from the approxitaateof the energy
conservation (in the absence of reaction). Having determined a neabieai in such a way, its
slow alteration within the preheat sub-zone is expected (with redpaciomentum, for example).
Unlike the preheat sub-zone, the reaction one can be typified by angiperxanate conservation
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law - the system momentum conservation. Therefore, another new eaigbtan be chosen as a
variation from this approximate law. On the basis of similarsogang we expect that u is slow
variable (with respect to energy or its modifications).

Thus, there is a good reason to consider a flame configuration iklog/fng way: within the
preheat sub-zone to use the pair of the variables (v, w) (v — slowfast); within the reaction sub-
zone - the pair (u, w) (u - slow, w - fast). This decomposition p&ms to re-write the original
system - as two separate systems for the different sub-zdrike flame. Each of these systems has
the conventional form of singularly perturbed system of ODEs, whickemalirect application of
the MIM legitimate.

The analysis of the system trajectory (solution) in the phaseesiganaturally subdivided into
two parts. The first stage of the trajectory is analyzedhmplane v-w. It has a starting point, &nd
represents the fast motion from the initial point in the directiothie attractive branch of the slow
curve. The equation of the slow curve is determined by the RHS ofghat®n for the variable w.
While the fast motion takes place the slow variable v consersgasittal value. The first stage ends
when the trajectory approaches the slow curve (matching point Q, campéice two parts of the
trajectory). The second stage starts at this point (the repubsaech of the manifold rejects the
trajectory in the plane u-w) and moves in the direction of the sang(flnal) point R,. The slow
variable u conserves the value obtained at the matching point Q. Onby $pecial value of the
flame velocityAr the trajectory can reach the singular (final) poigt Rall other trajectories moves
above or below the final point;R.). The matching point Q separating these two sub-zones plays the
key role in the determination of the flame velocity and allows ausiétermine the details of the
trajectory and to gain the expression for the flame velocity.

The suggested approach allowed us to get the analytical esim@dtihe inertia effect on the
flame velocity. The desired estimation represents a solution of the algeqratian (7).
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where the coefficients & E;, Esz2, Es2 depend on the problem parameters. The equation (7) is an
equation for inertia parametefe: and can be solved numerically.

In the absence of the inertia, the flame velocity is proportionath® cubic root of the
Arrhenius exponent, which coincides with our earlier results. The itnplaihe inertia grows with
increasing of the flame velocity. The inertia influence becomese important in the parametric
region closer to the sound velocity in a fresh mixture. The thealepeedictions demonstrated
rather good agreement with the direct numerical simulations.

Figure 1 allows us to get a visual impression how the approximatiol drithe asymptotic
approach (MIM) describes a real trajectory in the phase spdaefigure is a projection of the real
trajectory in the three-dimensional spafied- onto the @-I1) plane and the &) plane. The
approximation RQ of the preheat sub-zone corresponds to the stayeé &f the real trajectory, and
approximation QR of the reaction sub-zone to the \WP

One can see that within the preheat sub-z@hia (he interval 0-50) the energy of the system
is almost constant — a difference between the two curves (thealratid numerical) is not visible.
Visually the pressurdl is strictly proportional to the temperatuée A discrepancy begins to be
observable only in the vicinity of the matching point Q.

In a similar way one can ensure that the momentum of the systerserves its final value
within the reaction sub-zone with rather good accuracy. We are haohpedistinguish two curves
(solid and dashed ones) within the interval [70, 200Pafalues. This testifies, that the suggestion
made regarding approximate law of momentum conservation was na&hsonable. One can see,
that the approximation looks reasonable and the most discrepancy ivedserthe region of the
matching point Q.

E,+e¢

inert



Dimensionless Temperature © Dimensionless Concentration 1
I:)fin =<

120 /

140

120
100
80
60
40

LI @Inssaid Ss|uosuawiq
[ee]
o

2INSSa1d SSeUosLUBWIQ

20

U

Pi

0 20 40 60 80 100 120 0 0.2 0.4 0.6 0.8 1
Figure 1. Projection of the system real trajectorythe plane$-II (left) and6-n (right). Solid line BWPy,
— result of numeric simulations, dashed linegQ? (preheat zone) and &, (reaction zone) — our

approximations. The system parameters refd= 0.0295 y =13 ¢, = 643-10°; o =023
&, = 435.10°; q=05.66667. The dimensionless flame velocity (used for dashteajectory,
numerical data) isty = 142 the dimensional one is D=72.1 m/s.

Finally, we note that although the presented appion of the modified MIM approach to the
model of the pressure driven flames in porous mediies provide a broader more accurate
perspective than that previously obtained with moerial models, it is not without its own
deficiencies. It is indisputable that a more retdiglescription should ideally include one or more
additional effects: the wider region of the flamelecities (inertia impact is expected to be larger)
thermal diffusion (conventional mechanism of flarpepagation), more details of the chemistry
such that initiation of the chemistry via a radiqalol can be accounted for, etc. These directidns o
further improvement of our model are currently unahevestigation.
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