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Introduction

Premixed turbulent combustion in technical devices often occurs in thin flame fronts. The propagation of
these fronts, and hence, for instance, the heat release, are governed by the interaction of transport processes
and chemistry within the front. In flamelet models this strong coupling is expressed in treating the flame
front as a thin interface propagating with a laminar burning velocity sL. The coupling of transport and
chemistry is reflected in the scaling of the laminar burning velocity, which can be expressed as sL ∼

√
D/tc ,

where D is the diffusion coefficient and tc is the chemical time scale. Flamelet models for premixed turbulent
combustion have been extensively used in the past and different models have been formulated for Reynolds
averaged and large-eddy simulations (LES).

The G-equation model proposed by Williams [1] is based on the flamelet modeling assumptions and uses
a level set method to describe the evolution of the flame front as an interface between the unburned and
burned gases. The level set function G is a scalar field defined such that the flame front position is at G = G0,
where G0 is an arbitrary value, and that G is negative in the unburned mixture. The location of G0 can be
defined to be anywhere in the flame, for instance at a given temperature iso-surface. Then, the convection
velocity appearing in the G-equation is evaluated at that location, and the laminar burning velocity sL has
to be defined with respect to that location as well. Typically, G0 is defined to be either immediately ahead
of the flame in the unburned, or immediately behind the flame in the burned gases. The burning velocities
defined with respect to the unburned and burned are denoted as sL,u and sL,b, respectively.

Peters [2–4] has developed an appropriate theory for premixed turbulent combustion describing the
corrugated flamelets and the thin reaction zones regimes based on the G-equation formulation. Peters [4]
and Oberlack et al. [5] pointed out that, since the G-field has physical meaning only at G = G0, in order to
derive the Reynolds averaged G-equation, conventional averaging of the G-field cannot be applied. For LES,
this implies that not only is it impossible to obtain a filtered G-field from filtering the instantaneous resolved
field, but also that the filter kernels, which are usually being used for filtering the velocity and scalar fields
cannot be applied. In the application of the G-equation in LES, these facts have not been considered in
the past. Here, we will first develop a new filter kernel that takes information only from the instantaneous
resolved flame surface. Thereafter, the equation for the filtered flame front position will be derived. The
resulting equation has two unclosed terms, a flame front conditionally averaged flow velocity appearing in the
convection term, and the sub-filter burning velocity. To relate the conditional velocity to the unconditionally
filtered velocity, which is known from the solution of the momentum equations, a model for this quantity
will also be developed. Here, we will develop a G-equation for the filtered flame front position valid in the
corrugated flamelets regime. The equation valid in the corrugated flamelets and the thin reaction zones
regime, and also a model for the sub-filter burning velocity, will be given in the full paper.

G-Equation for the filtered flame location

Peters [4] and Oberlack et al. [5] have pointed out that for the derivation of a G-equation, describing the
ensemble or time averaged flame location, the traditional averaging of the entire G-field cannot be applied.
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Because the G-field has physical significance only for G = G0, only the G0 iso-surface can be of relevance
in the averaging procedure. The remaining G-field, which can be defined arbitrarily, must not be used.
Instead, Peters [4] has proposed an averaging procedure that only uses the probability density function (pdf)
of finding G = G0 at a particular location. This procedure was described only for the one-dimensional
case. Oberlack et al. [5] developed a rigorous averaging procedure for the three-dimensional case. Through
the consistent application of this averaging procedure, a G-equation for the averaged flame location and an
equation for the flame brush thickness have been derived for the corrugated flamelets regime. In this section,
we will first develop an appropriate LES filter, and then derive a G-equation for the filtered flame front
location in the corrugated flamelets regime by using similar arguments as given by Oberlack et al. [5]. The
resulting G-equation will be extended to the thin reaction zones regime in the following section.

A parametric representation of the flame surface F can be given as

xf = xf (λ, µ, t) , (1)

where xf is the flame front location, and λ and µ are curvilinear coordinates along the flame surface forming
an orthogonal coordinate system moving with the flame front. Considering a point P0 on the flame surface,
which is given by the coordinates (λ0, µ0), xf (λ0, µ0, t) describes the temporal development of the location
of the point P0 in physical space as function of time t. The coordinates λ and µ are hence parameters of the
function xf and will in the following be written as Λ =

(
λ
µ

)
.

For a given set of parameters Λ, a spatial filter H can then be defined as

H
(
Λ−Λ

′
)

=

{
a(Λ), if

∣∣xf (Λ) − xf

(
Λ

′
)∣∣ ≤ ∆

2

0, otherwise
(2)

where ∆ is the filter width and a(Λ) is a normalization factor that is determined by the normalization
condition

∫
F

H
(
Λ−Λ

′
)
dΛ′ = 1. This filter function is substantially different from the conventionally applied

filter kernels for scalar quantities. Since the flame is only defined on a surface, the filter also has to move
along this surface and cannot be used at an arbitrary point in space. The coordinates used in the filter
function are therefore not spatial, but flame surface coordinates. Then, a spatial filtering operation for the
flame front location can be defined as

x̂f (Λ, t) =

∫

F

xf (Λ′, t)H
(
Λ−Λ

′
)
dΛ′ . (3)

This filtering operation should be described in more detail for clarity. The surface coordinates Λ are defined
along the instantaneous flame surface. To obtain the filtered front location, for each point xf (Λ) on the
instantaneous flame surface, the filtering operation Eq. (3) yields a corresponding mean flame front location
x̂f (Λ). These locations define the filtered flame front position. Note, that although x̂f is expressed as a
function of Λ, these parameters are still defined through the unfiltered front.

Applying the filter operation to the equation describing the flame front displacement, which is given by
dxf /dt = v + sLn, leads to

dx̂f

dt
= v̂ + ŝLn , (4)

where the conditionally filtered flow velocity v̂ and propagation speed ŝLn are defined in accordance with
Eq. (3) .

To obtain an equation for the filtered flame front location, the implicit representation of the filtered flame
surface, given as

Ǧ(x, t) = G0 , (5)

is differentiated and the displacement speed of Ǧ appearing in this equation is associated with the filtered
displacement speed of the unfiltered front. This results in

∂Ǧ

∂t
+

dx̂f

dt
· ∇Ǧ = 0 . (6)

Note that the -̂quantities are a direct result of the filtering operation Eq. (3), whereas Ǧ is just the level set
representation of the filtered flame front location. Therefore, the filtered flame front is not yet defined by
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Eq. (5). Indeed, this equation and its differentiated form could describe any iso-surface. Only by choosing
the propagation speed of this surface equal to the filtered propagation speed from Eq. (4), this surface is
identified with the filtered flame front location. Introducing Eq. (4) into Eq. (6) yields the G-equation for
the mean flame front location as

∂Ǧ

∂t
+ v̂ · ∇Ǧ = −ŝLn · ∇Ǧ . (7)

As proposed by Oberlack et al. [5], the propagation term ŝLn can be modeled by the turbulent burning
velocity, here the sub-grid burning velocity, sT , and the gradient of the resolved G-field as

ŝLn = sT ň = −sT

∇Ǧ∣∣∇Ǧ
∣∣ , (8)

where ň is the normal vector of the filtered flame front position

ň = −
∇Ǧ∣∣∇Ǧ

∣∣ . (9)

Note that according to the definition of G0 the conditional velocity is either the filtered velocity in the
immediate unburned or burned gases, which will be denoted by v̂u and v̂b, respectively. Similarly, the
turbulent burning velocity has to be defined with respect to the unburned or burned gases, denoted by sT,u

and sT,b. The following derivations will be made by assuming G0 to be defined in the immediate unburned.
With these notations, Eq. (7) can be written as

∂Ǧ

∂t
+ v̂u · ∇Ǧ = sT,u

∣∣∇Ǧ
∣∣ . (10)

This equation describes the evolution of the filtered flame front location. To solve Eq. (10), models for the
sub-filter burning velocity and the flame front conditioned, filtered velocity have to be provided. The latter
quantity has to be modeled in terms of the Favre-filtered velocities, which are known from the solution of the
Favre-filtered momentum equations. A model for the conditional velocity will be provided in next section, a
model for the sub-filter burning velocity will be given in the full paper.

Model for the conditionally filtered flow velocity

The conditional velocity v̂ is the velocity at the flame front, weighted with the filter function H and averaged
over the entire flame surface within the filter volume. Physically, this averaged velocity, as it appears in
the convection term in Eq. (7), leads to the convection of the entire sub-filter flame surface. Hence, it is
important only to capture the large-scale velocity motion in the model for the conditional velocities, and
not the small scale velocity fluctuations, which only lead to sub-grid flame wrinkling, but not to convection
on the resolved scales. Then, the local unfiltered velocities can be assumed to be constant in the burned
and the unburned part of the sub-filter volume. These velocities are then equal to the respective conditional
velocities. If G0 is defined in the unburned, this can be written as

v(G) =

{
v̂u if G ≤ G0

v̂b, if G > G0 .
(11)

The unconditional Favre-filtered velocity can then be expressed by

ρṽ =

∞∫

−∞

ρv(G)P (G)dG = ρuv̂u

G0∫

−∞

P (G)dG + ρbv̂b

∞∫

G0

P (G)dG , (12)

where P (G) is the pdf of finding a particular value of G. Introducing the probability of finding burned
mixture as

pb =

∞∫

G0

P (G)dG , (13)
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the unconditional velocity can be written as

ρṽ = ρuv̂u(1 − pb) + ρbv̂bpb . (14)

Similarly, the unconditionally filtered density can be derived as

ρ = ρu(1 − pb) + ρbpb . (15)

To express v̂b by v̂u, we will use the jump condition for the mass balance across the mean flame interface,
given by

ρuň ·

(
v̂u −

∂x̂f

∂t

)
= ρbň ·

(
v̂b −

∂x̂f

∂t

)
. (16)

The displacement speed of the mean front can be expressed by Eqs. (4) and (8), where the choice of the
conditional velocity and the burning velocity depend on the location of G0 with respect to the flame. If G0

is defined to be in the unburned mixture, v̂u and sT,u have to be used. For the velocity jump across the
flame front this results in

ň · (v̂u − v̂b) =
ρu − ρb

ρb

sT,u . (17)

Introducing Eq. (17) into Eq. (14) results in an expression for the conditional velocity in terms of the
unconditional velocity as

ň · v̂u = ň · ṽ +
ρu − ρb

ρ
sT,upb . (18)

In order to make use of this relation in the G-equation given by Eq. (10), we first split the convection
term into a flame normal and a flame tangential part. Since the flame tangential part only leads to a parallel
translation of the flame front and has no influence on the flame propagation, it can be neglected. The
convection term from Eq. (10) can then be written as

v̂u · ∇Ǧ = (ň · v̂u) ň · ∇Ǧ . (19)

After introducing Eq. (18) into the normal convection term, only the normal component of the unconditional
velocity appears, which can again be complemented by the tangential part without changing the solution.
Using Eq. (15), the G-equation for the filtered flame front position can be written as

∂Ǧ

∂t
+ ṽ · ∇Ǧ =

ρu

ρ
sT,u

∣∣∇Ǧ
∣∣ . (20)
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