A Numerical Study of Premixed Turbulent Flame Dynamics

A. Lipatnikov and J. Chomiak

Department of Thermo and Fluid Dynamics,
Chalmers University of Technology, Gothenburg, 41296, Sweden

E-mail: lipatn@tfd.chalmers.se

Many experimental observations show that premixed turbulent flame speed and thickness grow in time (or with distance from flame-holder) in most flames. The goal of this work is to numerically study the effects of pressure-driven transport on the development of premixed turbulent flame structure, thickness, and speed by solving the following generalized flamelet closure

\[
\frac{\partial}{\partial t} \left(\bar{p}\bar{c} \right) \quad + \frac{\partial}{\partial x} \left(\bar{p}\bar{u}\bar{c} \right) = \frac{\partial}{\partial x} \left(\bar{p}D_t \frac{\partial \bar{c}}{\partial x} \right) + U \frac{\partial}{\partial x} \left[\bar{p}\bar{c}(1 - \bar{c}) \right] + \frac{\rho_u}{\tau_f} \left(\frac{\bar{p}}{\rho_u} \right)^q \bar{c}(1 - \bar{c}),
\]

of the mean combustion progress variable balance equation

\[
\frac{\partial}{\partial t} \left(\bar{p}\bar{c} \right) \quad + \frac{\partial}{\partial x} \left(\bar{p}\bar{u}\bar{c} \right) = - \frac{\partial}{\partial x} \left(\rho u' c' \right) + \bar{W}.
\]

Term III in Eq. 1 is a typical closure of the mean rate of product creation, \(\bar{W} \), provided by various flamelet models [1,2]. Different models result in different expressions for the flame time scale, \(\tau_f \), but the specification of such an expression is not needed here, because a closure for \(\tau_f \) does not affect the numerical results presented in a normalized form if \(\tau_f \) is not varied in space and time.

Terms I and II in Eq. 1 model turbulent diffusion and pressure-driven transport [2], respectively, and together represent a generalized closure of the transport term IV in Eq. 2. Here, \(D_t \) is the turbulent diffusivity and \(U \) is a velocity scale. Term II may be associated with the submodel of pressure-driven transport, \(\gamma S_L \bar{p}\bar{c}(1 - \bar{c})/2 \), developed by Bray et al. [3] for stagnating flames. Then, \(U = \gamma S_L/2 \), where \(\gamma = \rho_u/\rho_b - 1 \) is the heat release factor, and \(S_L \) is the laminar flame speed.

We have kept the turbulent diffusion term I in Eq. 1; despite the fact that, in many laboratory flames, this term is much smaller than the pressure-driven transport term II almost in the whole flame brush (\(0 < c_1 < \bar{c} < c_2 \leq 1, \ c_1 \ll 1, \ 1 - c_2 \ll 1 \)), for instance, term I was omitted by Bray et al. [3]
when modeling stagnating flames. One reason for keeping this term in simulations of a planar flame moving in a statistically stationary and uniform mixture is as follows. If one omits term I in this case, then the asymptotically steady solution of Eq. 1 should satisfy the following equation

\[
S_0 \frac{dc}{dx} = U \frac{d}{dx} \left[\frac{\tilde{b}}{\rho_u} \tilde{c}(1 - \tilde{c}) \right] + \frac{1}{\tau_f} \left(\frac{\tilde{b}}{\rho_u} \right)^q c(1 - \tilde{c}).
\]

(3)

However, Eq. 3 includes only three dimensional parameters, \(S_0 \), \(U \), and \(\tau_f \), and, due to dimensional reasons, \(S_0 = U f(\gamma) \) for an arbitrary \(\tau_f \), i.e., the fully-developed turbulent flame speed, \(S_0 \), does not depend on the mean rate of product creation. The absurdity of this conclusion\(^1\) justifies keeping of term I in Eq. 2 even if this term is much less than term II at \(c_1 < \tilde{c} < c_2 \).

To simulate the propagation of a statistically planar 1D flame in statistically stationary and uniform mixture from the left to the right, Eq. 1 has been normalized

\[
\frac{\partial}{\partial \tilde{t}} (\tilde{b} \tilde{c}) + \frac{\partial}{\partial z} (\tilde{b} \tilde{w} \tilde{c}) = \frac{\partial}{\partial z} \left(\frac{\partial \tilde{c}}{\partial z} \right) + P \frac{\partial}{\partial z} [\tilde{b} \tilde{c}(1 - \tilde{c})] + \frac{\tilde{b}^q}{4} \tilde{c}(1 - \tilde{c})
\]

(4)

by invoking the following velocity, \(u_o = 2(D_t / \tau_f)^{1/2} \), length, \(l_o = (D_t \tau_f)^{1/2} \), time, \(t_o = l_o / u_o \), and density, \(\rho_u \), scales and, then, solved together with the normalized mass balance equation and with the following state equation, \(\tilde{\tilde{c}} = (1 + \gamma \tilde{c})^{-1} \) [1,2]. The focus of this work is placed on the effects of \(P \) on the unsteady solution of Eq. 4, or, in other words, on the role played by pressure-driven transport, since we have already studied the dynamic behavior of the solution of Eq. 4 with \(P = 0 \) [4,5].

Shown in Fig. 1 are the effects of \(P \) on the self-similarity of the structure of developing flames. Numerous experimental data discussed elsewhere [4,5] show that the structure of various premixed turbulent flames is self-similar, i.e., the spatial profiles of the progress variable, normal to the flame brush, are described by the same function at different instants \(t \) after ignition when using the developing flame brush thickness, \(\delta(t) \), in order to normalize the spatial coordinate. Our previous simulations [4,5] have shown that combustion models associated with \(q = 0 \) in Eq. 4 predict this property if \(P = 0 \), whereas the models associated with \(q = 1 \) are not capable for doing so (Fig. 1b). An increase in \(P \) makes the self-similarity of the profiles more pronounced if \(q = 0 \) (Fig. 1a) and almost self-similar

\(^1\)The comment cannot be applied to stagnating flames studied by Bray et al. [3], because one more dimensional parameter, the flame strain rate, should be taken into account in the latter case.
solutions can be obtained even with $q = 1$ if P is sufficiently large (Fig. 1c). Thus, term II in Eq. 1, associated with the pressure-driven transport, enhances the trend to self-similarity.

Figure 2 shows that both normalized burning velocity, $u_t = \int_{-\infty}^{\infty} \hat{W} dx / (\rho a u_0)$, and flame thickness, $\delta^{-1}_t (t) = \max |d\hat{e}/dz|$, are decreased by P. However, Fig. 3 indicates that the effects of P on the development of u_t and δ_t can be substantially reduced by re-normalizing the results using new velocity, $u_{t,\infty} \equiv u_t (t' \to \infty)$, length, $\delta_{t,\infty} \equiv \delta_t (t' \to \infty)$, and two time, $\delta_{t,\infty}/u_{t,\infty}$ or P^{-2}, scales. Indeed, curves drawn with the former time scale are close one to another if $P \leq 0.5$, whereas the curves computed at $P = 1$ differ substantially from the other curves (Fig. 3a); and curves drawn with the latter time scale are close one to another if $P \geq 0.5$, whereas the curves computed at $P = 0.2$ differ substantially from the other curves (Fig. 3b) Moreover, the obtained results show that $u_{t,\infty} \sim 1/P$.
Figure 3: Development of burning velocity (fine curves) and flame thickness (bold curves), computed with $q = 0$ at various P, shown in legends, and re-normalized with the following velocity, $u_{t,\infty}$, length, $\delta_{t,\infty}$, and time scales, $\delta_{t,\infty}/u_{t,\infty}$ (a) or P^{-2} (b).

and $\delta_{t,\infty} \sim 1/P$ if $P \geq 0.5$. These observations imply that the flame dynamics changes substantially at $P \approx 0.5$ (or $U \approx (D_t/\tau_f)^{1/2}$). We may note also that the development of re-normalized burning velocities and flame thicknesses is similar to one another in the whole range of P studied (cf. fine and bold curves in Fig. 3), in line with the results of a theoretical analysis of the self-similar solutions of Eq. 2, discussed in Refs. [5].

When considering the ranges of weak ($P < 0.5$) and strong ($P > 0.5$) pressure-driven transport separately, the role played by pressure-driven transport is mainly reduced to a decrease in $u_{t,\infty}$ and $\delta_{t,\infty}$ by P; whereas the development of re-normalized burning velocities and flame thicknesses is weakly affected by P. Moreover, if the submodel of \hat{W} is able to yield a self-similar flame structure ($q = 0$), then, the structure is weakly affected by P. If the submodel of \hat{W} is not capable for doing so ($q = 1$), then, the pressure-driven transport can make the structure self-similar (cf., Figs. 1b and 1c).

