Thermo-Gas-Dynamic Model of Afterburning in Explosions

A. L. Kuhl1, R. E. Ferguson2 & J. B. Bell3

University of California Lawrence Livermore National Laboratory
Livermore, California

A theoretical model of afterburning in explosions created by turbulent mixing of the detonation products from fuel-rich charges with air is described. It contains three key elements: (i) a thermodynamic-equilibrium description of the fluids (fuel, air, and products), (ii) a multi-component gas-dynamic treatment of the flow field, and (iii) a sub-grid model of molecular processes of mixing, combustion and equilibration.

Key Words: afterburning/combustion in TNT explosions

Thermodynamic Model [1]

The model recognizes four fluids: (i) air-\(A\), (ii) fuel-\(F\) (expanded products gases from the detonation of fuel-rich condensed charges), (iii) frozen reactants-\(R\) (a stoichiometric mixture of \(A\) & \(F\), in ratio: \(\sigma_s = \frac{m_A}{m_F}\)), and (iv) equilibrium combustion products—\(P\). The thermodynamic states of these fluids were evaluated by the Cheetah code [2]. Computed results are displayed in the form of a Le Chatelier diagram: locus of states of specific internal energy versus temperature presented in Fig. 1. The computed points were fit with least-squares polynomial functions:

\[
\begin{align*}
 u_A(T) &= -13.765 + 0.03502 \times T + 7.5822 \times 10^{-5} \times T^2 \\
 u_R(T) &= -1183.8 + 0.16214 \times T + 6.3781 \times 10^{-5} \times T^2 \\
 u_F(T) &= -292.34 + 0.065287 \times T + 7.2955 \times 10^{-5} \times T^2 \\
 u_P(T) &= -745.69 - 0.21279 \times T + 18.262 \times 10^{-5} \times T^2
\end{align*}
\]

which are suitable for specifying the thermodynamic properties (equations of state) required by the Gasdynamic Model. The accuracies of these loci of states were confirmed by comparing the \(F\) and \(P\) curves with the heats of detonation and combustion \((H_d\) and \(H_c\)), and species compositions as measured in bomb calorimeter experiments [3].

1 Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, USA, 94550: kuhl2@llnl.gov
2 Krispin Technologies, Inc., Rockville, MD, ralph@krispintech.com
3 Lawrence Berkeley National Laboratory, Berkeley, CA, USA: jbbell@lbl.gov
Gasdynamic Model [4]

The model considers afterburning in the limit of large Reynolds, Peclet, and Damköhler number. At this limit, effects of molecular transport are negligible, and, the flow field is governed by the multi-component gas-dynamic conservation equations:

Mass: \[\partial_t \rho_m + \nabla \cdot (\rho_m \mathbf{u}) = 0 \] (2)

Momentum: \[\partial_t \rho_m \mathbf{u} + \nabla \cdot (\rho_m \mathbf{uu}) = -\nabla p_m \] (3)

Energy: \[\partial_t \rho_m (u_m + \mathbf{u} \cdot \mathbf{u}/2) + \nabla \cdot \rho_m (u_m + \mathbf{u} \cdot \mathbf{u}/2) \mathbf{u} = -\nabla \cdot (p_m \mathbf{u}) \] (4)

Components: \[\partial_t Y_k + \mathbf{u} \cdot \nabla Y_k = \alpha_k Y_s^k \quad \text{and} \quad \sum_k Y_k = 1 \quad (k = F, A, P) \] (5)

where \(\rho, u, p \) and \(\mathbf{u} \) denote the density, specific internal energy, pressure and velocity, respectively, \(Y_k \) is the mass fraction of component \(k \) (\(Y_k \equiv \rho_k / \rho_m \)) and subscript \(m \) denotes mixture. In the above, \(\alpha_k = \{-1, -\sigma_s, (1 + \sigma_s)\} \) for \(k = F, A, P \) represents the mass source/sink strength, and \(\sigma_s \) denotes the stoichiometric air/fuel ratio (\(\sigma_s = 3.2 \) for TNT-air). Thus combustion acts simultaneously as a mass sink for \(F \) & \(A \), and a mass source for \(P \). For the case of afterburning of hot detonation products in air, kinetics are virtually instantaneous (\(Da = \infty \)), and \(Y_s \) becomes a delta function.

The above must be closed by equations of state: \(p_k = f(\rho_k, u_k) \). Based on the quadratic relations \(u_k(T_k) = a_k T_k^2 + b_k T_k + c_k \) of (1) and the perfect gas law, one has for a pure component \(k \):

\[T_k = \left[-b_k + \sqrt{b_k^2 - 4a_k(c_k - u_k)}\right]/2a_k \quad \text{and} \quad p_k = \rho_k R_k T_k \] \[(6, 7) \]

while for a mixture \(m \) one finds

\[T_m = \left[-b_m + \sqrt{b_m^2 - 4a_m(c_m - u_m)}\right]/2a_m \quad \text{and} \quad p_m = \rho_m R_m T_m \] \[(8, 9) \]

where the mixture properties are determined from the thermodynamic mixing rules

\[a_m = \sum_k Y_k a_k \quad \text{and} \quad b_m = \sum_k Y_k b_k \quad \text{and} \quad c_m = \sum_k Y_k c_k \quad \text{and} \quad R_m = \sum_k Y_k R_k \] \[(10) \]
Combustion Model [1]

This models the sub-grid molecular processes of mixing, combustion, and thermal equilibration that obey thermodynamic mixing rules based on mass and energy conservation depicted in Fig. 2. First, a stoichiometric mixture of reactants is formed (blue lines in Fig. 2):

Mass: \[m_R = m_F + m_A \]

where \[m_A = \sigma m_F \quad \text{if} \quad \sigma > \sigma_s \]
\[m_F = m_A / \sigma_s \quad \text{if} \quad \sigma < \sigma_s \] (11)

Energy: \[u_R = (u_F + \sigma u_A) / (1 + \sigma_s) \] (12)

Next comes combustion, which corresponds to material transformation from \(R \) to \(P \) (red lines):

Mass: \[m_P = m_R \] (13)

Energy: \[u_p = u_R \] (14)

And then, thermal equilibration between combustion products and diluent \(D \) (green/pink lines):

Mass: \[m_m = m_P + m_D \] (15)

Energy: \[u_m = [m_P u_p + m_D u_D] / m_m \] (16)

Application

The Model was used to simulate the explosion of a 0.9-kg cylindrical TNT charge in a 16.6-m\(^3\) chamber [5]. Figure 3 shows that computed pressure histories are in good agreement with measured pressure records. Evolution of the total energy in each fluid:

\[U_k = \int_{V_k} (u_k + \mathbf{u} \cdot \mathbf{u} / 2) \rho_k dV \quad (k = F,A,P,m) \] is presented in Fig. 4. It shows that the total energy of the mixture \(U_m \) (green line) is constant, independent of time.

Conclusions

This Model predicts the gas-dynamic effects of afterburning in explosions in the limit of fast chemistry, where products are in chemical equilibrium. In this formulation, the total energy of the mixture is a system invariant throughout the combustion process.
References

Figure 1. Le Chatelier diagram of afterburning of TNT products in air. In this Model, combustion in an enclosure corresponds to a material transformation (jump) from $R\rightarrow P$ at constant energy (black line).

Figure 2. Combustion model: (i) reactants (blue), (ii) combustion (red), and equilibration (green/pink).
Figure 3. Comparison of 3D-AMR simulations of the afterburning of TNT in air with data.

Figure 4. Total energy evolution in the fuel (black), air (blue), products (red) and mixture (green).

Acknowledgements

This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. It was sponsored by the Defense Threat Reduction Agency under IACRO # 01-4441 & # 02-40851.