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Abstract

The recently introduced reduction technique called flamelet-generated manifold (FGM)
method is used to compute premixed methane/air counterflow flames. In the FGM method
the ideas of the manifold and the flamelet approach are combined: a manifold is constructed
using one-dimensional flamelets. In this paper the effect of flame stretch on the accuracy
of the FGM method is investigated. In the case of unit Lewis numbers a one-dimensional
manifold is able to model the main effects of flame stretch. A manifold with two progress
variables reproduces the results computed using detailed kinetics almost exactly. When non-
unit Lewis numbers are used, the enthalpy and element composition of the burnt mixture
change, which influences the mass burning rate significantly. If these composition changes
are included in the manifold using an additional controlling variable, the results agree well
with detailed computations.

Introduction

Although the power of computers has increased a lot during the last decade, the computation
time of realistic flame simulations using detailed reaction kinetics remains extremely high. To
reduce the computational cost of these simulations, several methods have been developed to sim-
plify the description of the chemical kinetics. One of the most promising reduction techniques
is the one proposed by Maas and Pope [1], called Intrinsic Low-Dimensional Manifold (ILDM)
method. This technique is based on a time scale analysis of the chemical source term. Recently,
another manifold technique called Flamelet-Generated Manifold (FGM) method has been intro-
duced [2], in which steady-state assumptions are not only based on ’chemical’ assumptions but
also on the most important transport processes. This method shares the idea with flamelet ap-
proaches that a more-dimensional flame can be considered as an ensemble of one-dimensional
(1D) flamelets. In the FGM method 1D laminar flamelets are used to create a manifold, which
can be used for subsequent flame simulations in the same way as an ILDM. A similar technique
called Flame Prolongation of ILDM (FPI) has been proposed recently by Gicquel et al. [3].

In this paper we will study the effect of flame stretch on the accuracy of the FGM method.
Flame stretch is one of the most important multi-dimensional effects, which is neglected while
constructing a FGM. However, we will demonstrate that this does not mean that flame stretch
effects (possibly in combination with preferential diffusion) cannot be taken into account using
FGM. Moreover, we will show that a FGM can be extended with extra progress variables in order
to reach a higher accuracy.

Stationary premixed counterflow flames are modelled using both detailed reaction kinetics



and FGM. These flames are very suitable to investigate flame stretch, because other effects such
as flame curvature and instationary effects are not present.

Flamelet-generated manifold

In this section we review the FGM method shortly; for more details the reader is referred to [2].
Consider a curve ������� through a premixed flame, locally perpendicular to isosurfaces of a certain
species mass fraction �	� , and parametrized by the arclength � . The 3D instationary conservation
equations for the species mass fraction can be rewritten into a 1D equivalent along this curve:
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with
�

the thermal conductivity, ��� the specific heat, Le 
 the Lewis number, �� 
 the chemical
source term, and

�
the mass flow rate. All multi-dimensional and instationary effects are gath-

ered in the perturbation term �"
 . Since it is expected that in most situations in premixed flames��
 is small compared to the other terms in Eq. (1), the perturbation �"
 is neglected. The remain-
ing steady-state balance between reaction, convection and diffusion is called a flamelet equation.
Note that the diffusion and convection terms are also neglected in the ILDM method. The set of
flamelet equations for all species together with a similar equation for the enthalpy can be solved
treating the system as a 1D adiabatic premixed flame. Its solution is called a flamelet and forms
a 1D curve in composition space, which can be considered as a 1D manifold.

The accuracy of the FGM method can be increased by increasing the number of progress
variables. When the perturbation � is not small, an extra dimension can be added to the man-
ifold. In this way an extra degree of freedom is added to the system and the magnitude of the
component of the vector � perpendicular to the manifold is reduced.

A FGM with two progress variables can be constructed from a set of flamelets with inlet
boundary conditions at different points on a 1D curve in composition space with constant en-
thalpy # and element mass fractions $�� . This set of 1D flamelets can be used to form a 2D sur-
face in composition space: a 2D FGM. This method to generate multi-dimensional manifolds
can be extended to the general case of % dimensions by choosing a � % �'& � -dimensional starting
plane.

Similar to the ILDM method, the FGM can be extended with additional controlling variables
to account for variations in the conserved variables # and $"� as well. If, for instance, changes
in the enthalpy are expected, a series of manifolds is created for different values of the enthalpy
and # is added to the manifold as extra controlling variable.

Once a manifold is constructed, it is used in the same way as an ILDM. The manifold is
parametrized as a function of the controlling variables and is stored in a database. This database
can be linked to a flame-solver, which solves conservation equations for the controlling variables.

Premixed methane/air counterflow flames

To investigate the influence of flame stretch premixed stoichiometric methane/air flames in a
planar stagnation flow are modelled. It is well known that these flames can be described by a set



of 1D equations [4]: 
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with * the local stretch rate, / the applied strain rate,

,
the viscosity, and EGF the number of

species. If we compare Eq. (4) with Eq. (1), we see that in these flames the perturbation ��
 is
given by a stretch term � �+* ��
 and that there are no curvature and instationary effects.

Conservation equations for the element mass fractions $"� can be derived by taking the proper
linear combinations of Eq. (4):
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where H �5
 denotes the mass fraction of element K in species L . Note the resemblance between
equation (6) and the conservation equation for the enthalpy (5). When unit Lewis numbers are
applied for all species, one can easily show that the enthalpy and the element mass fractions are
constant $"���M$"�ON - and #P�M# - . In general, however, these variables are changing in stretched
flames. Integrating Eq. (6) from unburnt (

( � �RQ ) to burnt (
( � (�S

) and substracting the
integral of the unstretched case, gives us a relation for the variations in the element mass fractions
in the burnt mixture due to flame stretch and preferential diffusion [5]

$"�ON S � $UT�ON SWV �X&�YS[Z]\^_	` �+*3� $"� � $"�ON -�� % (  (7)

where the changes in diffusive fluxes at
(�S

are neglected. The superscript a denotes stretchless
variables. For weak stretch the stretch rate may be assumed constant * � / , and the other
variables may be replaced by their stretchless values, resulting in a linear relation between the
variations and the applied strain / . The enthalpy # S and the element mass fractions $��5N S of the
burnt mixture determine the equilibrium composition. Variations in this composition influence
the mass burning rateon their turn, because the reaction layer, which determines the mass burning
rate to a large extend, lies close to the burnt mixture.

The mass burning rate of these stretched flames can be derived following the ideas of De
Goey and Ten Thije Boonkkamp [5]. They introduced the Karlovitz integral Ka

Ka � &� TS Z \^_	` �+*Mb�G% (  (8)
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Figure 1: Results for Le 
 h d . (Left) Profiles of z CO and z CH { O. (Right) Scaled mass burning rate as
function of Ka. (Both) solid line: full kinetics; dashed line: manifold with one progress variable; dots:
manifold with two progress variables; dotted line: theory according to Eq. (9).

where b� is a normalized progress variable, which is zero in the unburnt mixture and 1 in the burnt
mixture. The boundary

(�S
is taken at the point where the chemical source term of the progress

variable has been decreased by a factor of 10 from its maximum value. Using integral analysis
De Goey et al. showed that the scaled mass burning rate decreases linearly with Ka:�YSO|�� TS � &}� Ka (9)

The computations are performed for the case of unit Lewis numbers (Le 
X� & ) as well as
for non-unit Lewis numbers (Le 
�~� & ). Some results for Le 
�� & are shown in Fig. 1. The
profiles of the mass fractions of the species CO and CH 0 O computed using a 1D FGM are in
good agreement with the detailed computations. When a manifold with two progress variables
is used, the results are even better. A similar observation can be made for the results of the mass
burning rate. Using FGM the correct mass burning rate can be obtained for almost stretchless
flames up to flames near extinction (Ka � & ).

When non-unit Lewis numbers are applied, variations in element mass fractions and enthalpy
occur, due to differential diffusion effects. These variations and the mass burning rate of these
flames are shown in Fig. 2. The variations in element mass fractions are well described by Eq. (7).
The enthalpy variation, however, is not correctly predicted, because the diffusive fluxes for the
enthalpy cannot be assumed constant at the position

(�S
. The enthalpy and element variations re-

sult in a significant extra decrease of the mass burning rate as function of Ka compared to Eq. (9).
A 1D FGM is not able to represent this effect, because $�� and # are conserved in this manifold.
Results of computations using a 2D FGM, where the variations in $"� and # are included using
one additional controlling variable, are much closer to the detailed computations (See Fig. 2).
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Figure 2: Results for Le 
X�h d . (Left) Relative variation in element mass fraction
��� � h � �5N SW� � T�5N S

and enthalpy
���

as function of the applied strain g . Symbols: computed; solid line: theory according to
Eq. (7) using stretchless variables. (Right) Scaled mass burning rate as function of Ka. Solid line: full
kinetics; dashed line: 1D FGM; dotted line: 2D FGM.

Conclusions

More insight in the effect of flame stretch on the accuracy of the FGM method is obtained by
modelling premixed methane/air counterflow flames. A manifold with only one progress vari-
able is sufficient to model the main effect of flame stretch on the mass burning rate. If a higher
accuracy is desired, a second progress variable can be added to the manifold.

When non-unit Lewis numbers are used, the element composition and enthalpy of the burnt
mixture change, which results in an extra decrease of the mass burning rate. These differential
diffusion effects can be modelled by FGM when the variations in $"�ON S and # S are taken into ac-
count using an additional controlling variable.
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