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I. It is well-known that in the modeling of turbulent reacting flows, the
probability density function (pdf) approach provides the non-linear chemical reaction
term in the closed form. The challenging problem in this approach is to describe
adequately the molecular mixing in turbulent medium. Although various ideas and
analytical frameworks have been proposed to assess the micro-mixing process, the
problem of micro-mixing modeling still remains open. The simplest and perhaps the
most frequently used micro-mixing model is the LMSE closure developed by O’Brien
and Dopazo. In terms of the particle scalar value this closure without chemistry reads1

( )cc
dt
dc −Ω−= ω (1)

where the mean quantity is denoted by angled brackets and the mean mixing

frequency is defined as an inverse magnitude of the turbulence time scale, 
k
ε

ω = ,

where ε  and k  are averaged viscous dissipation and turbulent energy,
correspondingly. Here Ω  is a coefficient that can be defined from the known scalar
dissipation computed from DNS to mach one-point statistics. The well-known
shortcoming of the LMSE model is that the initial shape of pdf (in homogeneous
turbulence) does not relax alongside with the evolving process of the scalar
fluctuations decay. Several ways to modify the LMSE and others mixing models have
been proposed to remedy this principal deficiency. The developments of micro-
mixing models are reviewed by Pope2 and later by Dopazo3 and Fox4. To recapitulate,
one can essentially emphasize two LMSE improvements: a) the multi-scale model for
the mixing frequency5,6,7 and b) the joint-scalar-velocity model2,8,9 in which c  in (1)

is replaced by the mean value conditional on the velocity vc . In our paper in 10, a
new extension of the LMSE model is proposed. Similarly to the multi-scale model5,6,
this modification accounts for the entire spectrum of time scales in the turbulent flow
which is ranging from the integral scale ε/k  down to the Kolmogorov micro-scale

εντ /=K . However, alternatively to the multi-scale model,5,6 the proposed in 10

model treats the instantaneous relaxation rate ( ) ( )
k
tt εω =  as a stochastic process.

Here, the extended LMSE model10 is applied for the mixing of reacting scalars. The
case when unmixed gases (pure burnt, or fresh) are injected in the reactor at a certain
frequency, is considered as well.
II. Denoting ω  as a conditional average at the given value of ω , the extended
LMSE model writes10:

( ) tdccdc ωω −Ω−= (2)
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where the relaxation rate ( )tω  is to be a random process and ωc  is the mean

conditional scalar (instead of the mean frequency ω  and the mean scalar c ,
correspondingly given in the classical LMSE). Following Pope and Chen11 and
Pope12, the stochastic process for ( )tω  can be modeled by Ornstein-Uhlenbeck (OU)-

process13 for the logarithm of the normalized relaxation rate ( ) ( )
ω

ωχ tt ln=  with mean

χ=1m  and variance ( )2
12 mm −= χ  that are related through 12 2mm −= 14.

Likewise, the Taylor-scale Reynolds number dependence for the variance 2m  is taken
according to15 as: 36.0ln29.02 −= λRem .
Note that being a functional of ω , the solution of (2) at the given instant t  depends on
the all prehistory ( )1tω , where tt ≤1 . Complying with general principles stated by
Pope2 , the model (2) preserves the constant mean concentration for any random
process ω .
In the case of the stationary Gaussian process for χ , the evolution equation for the
conditional scalar pdf ( )tcP ,χ  is derived as:
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where ( )cW&  is the chemical rate and the proportionality constant χC  for the inverse
of integral time scale is to be 6.1  as was suggested in 11. So far, having obtained the
solution of (3), one can get the unconditional pdf ( )tcP , :

( ) ( ) ( ) χχχ dPtcPtcP
∞

∞−

= ,, (4)

which accounts for the scalar mixing over all range of turbulent length scales and
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III. First, the equation (3) was numerically solved for the simple case of the inert
( 0=W& ) scalar mixing in homogeneous turbulent flow. The 3rd order upwind
conservative differencing scheme with limiters convection16 was used in the
computation. In order to control the probability zero fluxes at the phase space
boundaries, an adaptive grid was specified with a continuous sliding of boundaries
simultaneously with evolving pdf’s. The initial pdf-distribution in the concentration
space was taken from 17 close to a double-delta function for all −χ spectrum and the
coefficient Ω  was fitted from the DNS data17. Fig.1 shows an example of the
evolution of unconditional pdf. It is seen that pdf’s cover the large interval of
intermediate concentrations instead of the symmetric movement of two δ-peaks
towards the mean concentration, as it would be done in the case of the classical LMSE
model. Results were compared to those found by DNS.17 It was shown that at the
early stages of the evolution of ( )tcP , , the extended LMSE model predicts forms
which are not far from those obtained by DNS.17. At the same time, in the long-time
limit, the predicted standardized pdf’s do not evolve towards a Gaussian as it makes



think from results of DNS study. Instead, at later times, the computed pdf’s display
the sharp exponential tails around the peak located at the mean scalar value.
The case with the chemical reaction is demonstrated in Fig.2. Initially, the
concentration of fresh gas is taken as eight times more than the concentration of burnt
one. These unmixed gases are mixing in a turbulent way and reacting. The chemical
source is taken here as in 18: ( ) ( ) chcccW τ/142 5−⋅=&  (burnt and fresh gases are
ascribed correspondingly to 0=c  and 1=c ; and chτ  is the chemical time). The
coefficient Ω  is taken here equal to unity. It is seen that the initial delta peak at 0=c
disappears in time and as time progresses further, the probabilities for intermediate
concentrations arise due to the mixing. In sequel, the rate of chemical reaction is
increasing and the peak of pdf at the side of burnt gas ( 1=c ) is growing.
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Fig. 1. Evolution of the scalar pdf without chemical reaction
(the parameters are taken from DNS 17: 50=λRe , 10 =k/ks )
Fig. 2. The pdf with chemical reaction ( 100=λRe ; 001.0=chτ ; 001.0=turbT ; 1=Ω )
IV. Next step in the present work concerns the modeling of the mixing of reacting
scalars when unmixed gases (pure burnt, 0=c , or fresh, 1=c ) are injected in the
reactor at a certain frequency injβ  with simultaneous withdrawal of the same mass of
mixture from reactor. Let us assume that the probabilities of observing the values

0=c  and 1=c  in the injection flow are α  and α−1 , correspondingly. Using the
method developed in19, an equation for the smooth function ( )χcg  with boundary
conditions can be derived:
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The case with 0=α  is shown in Fig. 3 where an evolution of the value



( ) ( )dctcPcWch ,
1

0

⋅ &τ  for different ratio of injection-to-integral time scale is presented.

It is seen that the turbulent combustion rate is increasing at early stages due to the
turbulence/chemistry interaction and further is decreasing due to dilution of partially
mixed gases by the pockets of fresh gas. The analysis of pdf distributions is given in
the paper for different cases of scalars injection.
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Fig.3. The influence of the injection-to-integral time scale ratio on the mean
combustion rate.
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