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1 Introduction

Dynamical phenomena leading to instability are often observed in modern lean premixed combustors. Be-
cause these oscillations are not easily suppressed by standard methods, active control constitutes a possible
alternative. Closed-loop controllers for combustion instabilities are based on a time-delay scheme. This is
however limited to a narrow domain of operation. A more sophisticated controller applies different gain
and phase at each frequency depending on the system to control. Such controllers need to model the system
behaviour through an identification step. We present here an experimental study of identification process in
the case of a swirl stabilized spray combustor. The measured transfer function is used in the active control
of combustion instabilities.

2 Experimental set-up

The experiments are performed in a laboratory scale Lean Premixed Prevaporized (LPP) atmospheric com-
bustor operating at a heat release of 70 kW. The general description of the test rig may be found in Ref. [1].
The fuel-air premixing system (Fig. 1) is similar to an industrial gas turbine LPP injector. The swirl number
at the exit of the injector is S = 0:22.
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Figure 1: Sketch of the LPP injector
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Figure 2: Sketch of the experimental set-up including closed-loop control set-up

An overview of the set-up is shown in Fig. 2. The burner is supplied with electrically preheated air at 600 K.
Air flow rate is kept constant at 22 g s�1. Liquid heptane is used as fuel with a flow rate of 1.4 g s�1. The
mixture equivalence ratio is � = 0:9. The combustion chamber is 50 cm long with a square section of
10�10 cm2. Lateral fused silica windows allow optical access. A plug located on the upper wall of the
combustor at 5.5 cm from its entry is used for unsteady pressure measurements with a microphone mounted
on a wave guide.
The actuator consists of secondary air injection. This airflow is separated into four high speed air jets before
impacting the fuel spray at its basis (Fig. 3). The modulation of airflow rate is obtained with a MOOG
electromagnetic valve designed for high frequency response (up to 400 Hz). The instantaneous equivalence
ratio fluctuates while the mean equivalence ratio is kept constant with or without actuation. The mean
airflow rate through the actuator is 1.0 g s�1 which corresponds to 4 % of the total airflow in the burner.
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Figure 3: Sketch of the actuator

The overview of the set-up for closed-loop control is sketched in Fig. 2. A microphone detects the instability
and transmits the measured signal to a low-pass filter. The filtered signal is then transmitted to the controller.
The low-pass filtering operated at 1 kHz eliminates higher frequency disturbances. The sampling frequency
on the DS1102 dSPACE board is 5 kHz. A threshold and an offset are applied to the output signal of the
controller to fit the driving requirements of the high speed valve.

3 Control algorithm

A noise source semi-adaptive algorithm is used to control combustion instabilities. The controller is de-
scribed in detail in Ref. [2,3] and presented in Fig. 4. The system is modelled by a finite impulse response
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(FIR) numerical filter with 200 coefficients. The coefficients of the controller are optimized to reduce the os-
cillations through a modified LMS algorithm which inputs are the system model and the microphone signal.
The algorithm minimizes the energy for actuation as soon as the oscillation level is reduced.
The FIR filter defines the behaviour of the system comprised between output and input of the controller.
This includes actuation and injection systems, combustion chamber, sensor and low-pass filter. The FIR
filter is defined by series of coefficients ai. The pressure y(t) at instant t can be predicted by :

y(t) =
NX

i=1

ai x(t� i�t) (1)

where x(t) is the control algorithm output, �t the sampling period and N the FIR filter order.
The estimation of the system behaviour is carried out during the identification step via open-loop white noise
injection (Fig. 4) before the control itself. Identification converges in about 10 s. Since the instabilities in
the burner occur around 400 Hz, the white noise used for identification is filtered at 800 Hz.
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Figure 4: Sketches : (a) Off-line system identification algorithm (b) Noise-source semi-adaptive controller

The updating scheme of both identification and control are carried out via a LMS algorithm. A leakage
factor is introduced in the basic algorithm for controller optimization. The leak provides the necessary
spectral content for control convergence [4]. The modified updating algorithm for the controller is given by :

wk+1 = �wk + � e0k ek (2)

with 0 < � < 1. If � = 1, the original update law without leak is obtained. The vector containing the filter
coefficients to update is denoted as w, e is the error signal delivered by the microphone and e 0 denotes the
filtered error signal in vector form. The index k designates the discrete time instants.
The cost function to be minimized by the leaky LMS algorithm is given by :

�̂ = e2
k

(3)

where e2
k

corresponds to the squared instantaneous error signal.
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4 Results

One can compute a direct transfer function between the valve command and the microphone pressure sig-
nals. The secondary path estimated during the identification process is supposed to model the same transfer
function. Both transfer functions are plotted in Fig. 5, in the form of amplitude and phase as a function
of frequency. The same figure shows the difference between the two transfer functions. One may see that
both determination techniques are in good agreement for frequencies below fc = 420Hz. Coherence be-
tween command and pressure signals is strongly decreasing beyond fc corresponding to the electro-valve
bandwidth. The system behaviour is well reproduced in the pertinent frequency range.
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Figure 5: Transfer function of the burner (left hand-side). Comparison between estimation via FIR numerical
filter and measurements from real signals (valve command and microphone signals). Difference between
real and estimation (right hand-side)

A sensitive parameter that should be precisely reproduced is the phase of the transfer function. Indeed,
an error greater than 90� on the phase may lead to a divergence during control operation. The difference
between estimation and real transfer function in the burner is shown on the right part in Fig. 5. The error in
phase is �� < 40� for frequencies lower than f < 420Hz. For instability frequencies below 400 Hz, the
precision on the phase is adequate. The estimated transfer function of the secondary path is accurate enough
to allow closed-loop control using this model in the algorithm.
An example of transition between unstable and controlled mode in the swirl stabilized combustor is pre-
sented on the left part in Fig. 6. A transition between controlled and unstable mode is presented on the right
part. The plots show microphone and electro-valve command signals during both transitions. The electro-
valve command signal is rapidly increasing once the controller has been switched on. Simultaneously, the
pressure signal amplitude is decreasing. From the average over series of ten tests, this process takes approx-
imately � � 70ms. Then, once the microphone signal reaches its controlled amplitude, the command signal
is decreasing, optimizing the energy level required by the controller. One may notice that the controller
effectiveness is not perfect. Some limited duration pressure bursts are observed during the control phase.
The same unstable/controlled transition has been observed for ten cases in the same regime, so that mean
values of pressure oscillations reduction could be measured. The semi-adaptive noise-source controller can
reduce the root mean squared (rms) pressure in the combustor from pu = 650Pa in the unstable case to
pc = 400Pa in the controlled situation. Considering the mean pressure level pst = 130Pa under stable
operation, one can define a control efficiency as the reduction of pressure level due to unstable combustion
as R = (pu � pc) = (pu� pst). The mean efficiency value in the studied regime is R = 50%.
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Figure 6: Microphone signal (upper plot) and controller ouput signal (lower plot). On the left, the controller
is switched on at vertical line. On the right, the controller is switched off at vertical line.

5 Conclusion

A system identification method is used to determine accurate estimates of the transfer function in the case of
a swirl stabilized spray combustor operating at 70 kW. The error in phase on the estimated transfer function
is below 40� in the frequency range of interest while a difference greater than 90� would lead to controller
divergence. The model could be integrated in a noise source semi-adaptive controller. The algorithm could
reduce the oscillations level due to unstable combustion by 50 %. The next step is to integrate the method in
a self-adaptive controller where the system identification is performed simultaneously with control.
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