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Abstract

Numerical simulations of premixed turbulent stagnation ames have been performed
using the Flame Speed Closure (FSC) model in order: (1) to further test the model under
inauspicious conditions, and (2) to test whether or not stagnation ames are equivalent
to fully developed ames in homogeneous ow �elds. The results indicate that the model
well predicts the stationarity of these ames and their mean thickness. This suggests that
the ames studied are not fully developed, because the FSC model cannot describe fully
developed ames, in principle.

Introduction

In recent years, the so-called Flame Speed Closure (FSC) model, discussed, in detail, else-
where [1, 2, 3], has been successfully applied to predicting the basic characteristics of various
laboratory [2, 3, 4, 5, 6, 7, 8] and industrial [5, 9] premixed turbulent ames. Despite this
wide validation of the model, certain authors [10] question it by highlighting that the FSC
model cannot describe fully developed ames, in particular, planar ames of a constant thick-
ness, which propagate at a constant speed against a stationary and spatially uniform unburned
mixture ow. Indeed, it can easily be shown [3] that the following basic equation of the model
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predicts permanent growth of the mean ame thickness, �t, in the planar one-dimensional case.
Here, c is the progress variable, xj and uj are the coordinates and ow velocity components,
respectively; � is the gas density; the subscripts u and b label the unburned gas and products,
respectively; Da = �t=�c is the Damk�ohler number; �t = L=u0 and �c = �u=S
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L are the turbulent
and chemical time scales, respectively; u0, L, and Dt are the r.m.s. turbulent velocity, integral
length scale, and di�usivity, respectively; �u is the heat di�usivity of the unburned mixture;
SL is the laminar ame speed; and A is a constant of the model. Both the Reynolds averages
denoted by overbars and the Favre averages, such as ��~c = �c and c00 = c� ~c, are used in Eq. 1.

Contrary to Peters [10], we do not think that the discussed property is a substantial draw-
back. From our point of view, a good model must describe real processes, rather than hypo-
thetical ones. Numerous experimental data analyzed by us [11] indicate that many laboratory
ames (spherical, Bunsen-type, V-shaped, etc.) are developing ames, rather than fully de-
veloped ones. For these reasons, many popular models, which deal with a hypothetical, fully
developed regime of turbulent combustion, fail to predict the basic features of real ames, as
discussed, in detail, elsewhere [11, 12]; whereas the FSC model is capable of doing so.



Nevertheless, the inability of Eq. 1 to yield a fully developed ame restricts the domain
of applicability of the FSC model. Thus, the following issues appear to be of interest: Is this
restriction important? Do fully developed laboratory premixed turbulent ames, which the
FSC model cannot be applied to, exist? Premixed ames in stagnating turbulence seem to be
a challenge to the FSC model from this standpoint. On the face of it, such planar and steady
ames look like fully developed ones and many authors appear to share this opinion. However,
this association may be questioned because stagnating ows are substantially spatially non-
uniform, whereas fully developed ames must be steady and planar if the unburned mixture
ow is stationary and spatially uniform.

The above reasoning explains the goal of this study, that is to simulate stagnation turbulent
ames using the FSC model. Such studies o�er the opportunity: (1) to further test the model
under inauspicious conditions, and (2) to get insight into the relation between stagnation
turbulent and fully developed ames. Indeed, if stagnation turbulent ames were equivalent
to fully developed ames, Eq. 1 would fail to describe them. To the contrary, if Eq. 1 is able
to describe stagnation turbulent ames, this would suggest that they are developing ames,
rather than fully developed ones.

A numerical model

Premixed turbulent stagnation ames have been intensively investigated over the past 15 years.
The state of the art of this problem was discussed in a recent paper by Bray et al. [13], in
which the key references may be found. For this reason, we will restrict the discussion only to
issues related directly to our goals.

In Ref. [13], a quite sophisticated submodel of the e�ects of heat release on turbulent
transport has been developed; but, when validating it against experimental data, the authors
used the measured pro�les of the progress variable, rather than predicting them. We looked
into the problem from another approach: The focus was placed on combustion modeling,
whereas the turbulence submodel was simpli�ed as much as possible; i.e., we simulated a ame
stabilized in a hypothetical stagnating-like mean ow with the turbulence characteristics being
spatially uniform. The stagnating turbulence is certainly non-uniform [13, 14]. However, to
quantitatively predict the behavior of turbulence characteristics near the stagnation point, an
adjustment of the classical turbulence model constants is required even in constant density
cases [14]. Modeling the e�ects of heat release on a stagnating turbulence further complicates
the problem and involves additional constants [13]. One could try to combine Eq. 1 with a
sophisticated turbulence submodel, however, such a combined model would be quite complex
and would include a large set of adjustable constants. The presence of adjustable constants
questions any conclusions drawn by comparing numerical and measured data. However, such
complications can be avoided if the focus is placed on our primary goal: To test whether or not
Eq. 1, which is applicable to developing ames only, can predict the basic features of stagnation
turbulent ames, in particular, the stationarity of such ames and the spatial uniformity of �t.
We assume that the above simpli�cation is adequate for this goal.

In addition to this simpli�cation, the following standard assumptions [13]
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have been invoked. Here, t0 = t=�t is dimensionless time, u and v are axial and radial mean
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values of these parameters corresponding to typical conditions in stagnation ames. A pro�le
calculated in case 3 is typical for such ames. In cases 2 and 6, the pro�les are similar to the
data of Cheng et al. [16] (see diamonds in Fig. 1). This similarity implies that quenching
of amelets by turbulent eddies is not the only possible cause of ame drift to the stagnation
point. This issue requires further study. Finally, the maximum slopes of the calculated curves
are controlled mainly by dt (cf. �ne and bold curves) but they are weakly a�ected by ut (cf.
curves 1, 2, and 3). Since dt is controlled not only by turbulence characteristics but also by
the distance d, this property is quite speci�c for the solutions discussed as compared with the
solutions of the classical planar one-dimensional balance equations.

Conclusions

Numerical simulations of premixed turbulent stagnation ames have been performed using the
FSC model. The results indicate that the model well predicts the stationarity of these ames
and their mean thickness. This suggests that premixed turbulent stagnation ames are not
equivalent to classical planar one-dimensional fully developed ames which propagate through
an initially uniform mixture.
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