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Abstract

Theoretical [1-3] and numerical [4-6] studies on the structure and stability of detonations
have often applied one-step approximations to model detonation chemistry. In order to study
detonation properties [7] and evaluate pulse detonation engine performance [8], using mul-
tidimensional computational methods, it is desirable to have a simplified, realistic chemical-
kinetic description for model fuels like acetylene and ethylene, and practical fuels like propane
and JP-10. Detailed chemical-kinetic descriptions, consisting of 174 elementary steps among
36 chemical species, have been developed for ignition and detonation of acetylene, ethylene,
and JP-10 fuels [9-11]. Induction times predicted using this mechanism for isobaric homo-
geneous ignition are in good agreement with induction-time data from shock tube studies.
From this detailed mechanism, short mechanisms comprising only the most important ele-
mentary steps have been identified for acetylene [9] and ethylene [10]. Systematic reduction,
using steady-state and partial-equilibrium approximations, has further yielded a seven-step
mechanism for acetylene detonation for high temperatures. Further, it was found that the
seven-step mechanism can be reduced by combining the first four steps which are important
during induction stage into a one-step approximation. This one-step reaction leads to chain-
branching thermal explosion releasing most of the heat. It is followed by a CO-oxidation
and radical-recombination step that proceeds at the rate of the H, OH recombination re-
action. The temperature histories from this resulting two-step mechanism are in excellent
agreement with those from the detailed mechanism. Such a two-step description has also
been developed for ethylene from a knowledge of the detailed chemistry. The detailed study
of high-temperature acetylene detonations indicates that the identities and the concentrations
of the intermediates and radicals at the end of the induction period, essentially, identifies the
first step of the two-step mechanism. From simulations using detailed mechanism, such iden-
tities and concentrations have been established for ethylene [10]. The rate of the first step
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is approximated as a combination of an initiation and a chain-branching rate and the rate
parameters are identified by comparing with ignition-time predictions using detailed mecha-
nism. The second step is chosen to be the CO-oxidation and recombination reaction similar
to acetylene. These two-step descriptions are summarized here and the rates of these global

reactions are expressed in terms of the rate parameters of elementary reactions listed in Table
1.

e A two-step mechanism for high temperature acetylene-air detonations has been devel-
oped [9] and modified slightly to release more heat at the end of the induction stage.
This mechanism can be written as
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The rates for these two steps are given by

ot = 2(hks [ M][H][OH] — & [M][H,0)), @)

wr = 8(krks/k1)o[M][CoHo] + 2pk: [H][O2] H {[C2Ha]}, }
where H{ } denotes the Heaviside step function, which is needed to turn off the fuel-
consumption reaction after all of the fuel is consumed, because the reduced chemistry [9]
relates the branching rate of the fuel-consumption process to the rate of elementary re-
action 1 of Table 1. The subscript o signifies evaluation at the initial temperature T,
while factors without this subscript vary with temperature, for reasons explained pre-
viously [9]. The parameter p = ki/(k1 + k2[M] + ko) in Eq. (2) is a correction factor
that accounts for the slowdown in the branching rate that occurs when the temperature
decreases. This slowdown, which was not addressed in the previous [9] two-step approx-
imation, arises because elementary step 2, as well as step 9, which is followed partially
by CyHz 4+ Oy — CyHy + HOs, results in the formation of the relatively stable HOs.

e Similar to acetylene, the following two-step mechanism has been identified for ethylene

2



detonations [10].

CoH, +20, — 2CO + %Hgo + §OH + gH (1)
4 2 2
+2b6(OH +rH) /(1 + ), (I1)

where 7 and s have been defined above, while a, b and ¢ are as follows
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The rates of the global reactions are

@i = kio[CoH4][Os] + ¢ A [H][OoH {[CoHa}, } (4)

o = 5 ([ MIHOH] — k[ M[H;0)),

where the correction factor ¢ = k1/(k1 + k2[M] + ¢ k11), in which ¢ = k12[O3]/(k12[O02] +
k13[M]) is introduced to extend the range of applicability of the two-step mechanism to
lower temperatures, where the branching rate is slowed by the formation of HO5;. The
factor ¢ is analogous to the factor p for acetylene, the slowing for ethylene occurring
through elementary reaction 2 in Table 1 and also through the reaction 11 followed by
the reaction 12.

e Related two-step mechanisms have also been developed for propane and JP-10 fuels.

These studies reveal different ignition mechanisms for different fuels. For acetylene and ethy-
lene, chain-branching thermal explosion theory has been applied to obtain a two-step mech-
anism for use in detonation calculations. For higher hydrocarbons, however, the choice of
fuel-consumption criteria may lead to such simplified descriptions.
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Figure 1: Comparison between the detailed and the two-step mechanism for ignition-times
and temperature histories for isobaric homogeneous ignition of ethylene-air mixtures

Table 1: Relevant Elementary Reactions and Rate Parameters

No. Reaction A? n? E?
1 H+0O, — OH+O 3.52x101 -0.70 71.4
2b H+O,+M — HO,+M 2.60x10" -1.20 0.0
3¢ H+OH+M — H,O+M 2.20x10%2  -2.00 0.0
4¢ HO+M — H+OH+M 2.18x10% -1.93  499.0
5 CO+0OH — CO,+H 4.40x10%  1.50 -3.1
6 CO,+H — CO+ OH 4.97x10%8  1.50  89.7
7 CyHy + Oy — CH,O + CO 4.60x10"™ -0.54 188.0
gd CH,O+M — CHO+H+ M 6.26x10%  0.00 326.0
9¢ CQHQ +H+M = CQHg + M ko 4.40X1014 -0.10 -24.05

ke 1.86x10™ 0.80 -3.38
10 CoHy + Oy — CQHg + HO, 4.22x10'3 0.00 241.0
11 CH,+H+M — CyH;+ M ke 1.90x10% -5.57  21.1

ke 1.08x10' 0.45 7.6
12 CoHs + Oy —  CyHy + HO, 2.00x102  0.00  20.9
13f CoHs + M  — CoH, +HA+ M ky 3.99%x10% -4.99 1674

ke 1.11x10'™ 1.04 153.8

*Specific reaction-rate constant k = AT"e ;

—E/RT.

units mol, cm?, s, K and kJ/mol.

bChaperon efficiencies: CO, 0.75; CO», 1.5; H,0, 7.0; Oz, 0.3; CyHg, 1.5; others, 1.0.
¢Chaperon efficiencies: CO, 1.9; CO2, 3.8; Hz, 2.5; Hy0O, 12.0; others, 1.0.
dChaperon efficiencies: CO, 1.9; COs, 3.8; Hs, 2.5; Hy0, 16.3; others, 1.0.
¢Troe Falloff F. = 0.7; Chaperon efficiencies: M = 1.0 for all species.

ITroe Falloff F,. = 0.832 x exp(—1/1203.0); Chaperon efficiencies: M = 1.0 for all species.
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