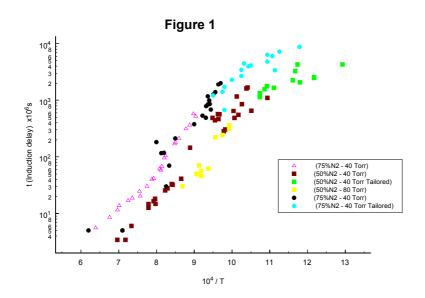
Ethylene Combustion Studied Over a Wide Temperature Range in

High Temperature Shock Waves

P. Cadman*, R. J. Bambrey, G.O. Thomas and S.K. Box

Combustion Physics Group, Department of Physics, University of Wales

Aberystwyth, SY23 3BZ, UK


Abstract

The initiation of ethylene combustion (at $\phi = 1$ and 1.5) was studied over a wide range of temperatures (800-2273K) in shock waves. Ignition delay data showed the presence of 2 or 3 different chemically controlling regimes in the combustion.

Figure 1 shows the temperature dependence of the ignition delays of ethylene in N_2/O_2 mixtures. These were done on two different shock tubes under different conditions with a large amount of fuel (75 and 50% N_2 , O_2 and fuel making up the ϕ = 1 and 1.5).

At low temperatures (T~900-1000K) the time development of a combustion bubble was tracked via Schlieren techniques and was seen to grow slowly. It was formed away from the backwall of the shock tube at the lower temperatures, a result which was unexpected. Unburnt gas, between the bubble and endwall which was compressed and heated by the latter, exploded and gave rise to a strong combustion wave which travelled back through the partially burning gas. Emission measurements showed the presence of CH*, OH*, C₂* and a continuum emission attributed to CO₂* flame bands. C₂* was found to be only important in richer mixtures. CH* was formed only ~ μ secs ahead of the other diatomics. The spectra of CH* C₂* and OH * was tracked from the initial developing combustion bubble.

Further work and results on this system will be presented.

