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Combustion in high performance engines utilizes strong swirl, recirculation and interacting jets to enhance the mixing 

rate of the fuel, air and products, and hence maximize the burning rate.  The ideal limit for these systems is often modeled 
as a well-stirred reactor [ 1 ].  The operation of a well-stirred reactor is governed by a characteristic residence time, resτ , 
which is the nominal time the reactants spend inside the reactor. Stable operation is achieved when the residence time is 
larger than the characteristic chemical time, otherwise blow-out should be expected.  

Combustion dynamics, resulting from coupled heat release-pressure oscillations, has been suspected to occur when 
oscillations in the mass-flow rate, equivalence ratio, inlet temperature and pressure, etc., occur at the same time-scale.   The 
condition under which a combustion system becomes unstable has been expressed in terms of the Rayleigh criterion [ 2 ], 
which states that a combustion system becomes unstable when the heat release increases at a moment of a rise in pressure. 

In a former study [ 3 ], we investigated the linear response of a WSR model to residence time oscillations using a 
single-step kinetics mechanism.  We showed that as the mean equivalence ratio or the mean residence time approach the 
blow-out limit, the operating point may transition from stability to instability due to a sudden phase change between 
pressure and heat release oscillations.  In this paper, we use the same approach with a multi-step kinetics mechanism 
instead of a single-step mechanism to examine its impact on the instability characteristics.  

The governing equations of a well-stirred reactor are obtained using the conservation laws and a set of reaction-rate 
equations.  The conservation equations of the mass, energy and species in the WSR are given by:   
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where M , E , and kM are a total mass, energy and mass of species k  inside the combustor, respectively, 
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kr ThWQ ∑= &&  is the heat release rate due to the chemical reaction, kW&  is a consumption rate of species k , m&  is the 

mass flow rate, h is the enthalpy per unit mass, Y  is the mass fraction, and subscript i refer to the inlet condition.   
For a single-step mechanism, the source terms can be represented as function of Y and T  [ 4 ] as follow: 
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where fA  is the frequency factor, rh∆ is the enthalpy of reaction (measured per unit mass of fuel), and RET aa /=  where 

aE  is activation energy and R  is the gas constant. Linearlizing Eq. (4) and using Eqs. (1)-(3), we obtain the following 
linear heat release rate model [ 3 ]:  
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The cut-off frequency α and the static gain β  are functions of the mean residence time, the equivalence ratio, and the 
inlet temperature.  At a fixed equivalence ratio, if the residence time is much larger than the chemical reaction time, almost 
all the fuel is burnt, i.e., 0≈Y .  In this case, α  and β  are much larger than the acoustic frequency, and the heat release 

responses instantaneously to the acoustic perturbations.  As the residence time decreases, the unburned fuel Y  increases, 
and the values of α  and β  decrease. Moreover, the change of the residence time affects the equilibrium temperature T . 

As the residence time decreases, the equilibrium temperature T  decreases, while α  and β  change from positive to 

negative values because of the a
o

io T
T
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−  term.  When α becomes negative, the heat release model itself becomes 

unstable.  The system is critically stable when 0=α . It is shown that this corresponds to blow-out [ 3 ].   
Equation (5) shows that when β changes sign, it introduces o180  phase change between m& ′  and rQ& ′ .  If the heat release 

dynamics is coupled with acoustics, this phase change may trigger a thermoacoustic instability as an out-of-phase 
relationship between ),( qp ′′ becomes in-phase.  That is, at 0=β , the system can transition from stability to instability, 
and 0=β  corresponds to burning at the maximum heat release rate [ 3 ]. Equations (6) and (7) are similar expect for the 
extra “1” in Eq. (6).  Thus, one expects β  to become negative before α as he residence time decreases.  Therefore, 
immediately before blow out ( 0=α ), the heat release experiences a phase change.  That is, the onset of thermoacoustic 
instability may occur before blow-out. The change of the equivalence ratio at a fixed residence time also changes the 
equilibrium temperature T , thereby affecting α and β . One can expect that α  and β  become negative as the equivalence 

ratio decreases due to the drop of the equilibrium temperature T .  
Now, we use a multi-step mechanism. For 83HC , the following 4-reaction step has been suggested [ 5 ]. 

24283 2/3 HHCHC +→  

242 22 HCOHC +→  

222/1 COOCO →+  
OHOH 222 2/1 →+  

In this case, the WSR model is governed by four rate equations and the energy equation, increasing its order to 5.  To get a 
linearized model, we define the following states variables: 
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The linearized model is: 
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The derivatives are obtained numerically around an equilibrium point. The transfer function previously defined in Eq. (5) 
becomes  

im
h

D &∂
∂

=



Real Axis

Im
ag

 A
xi

s

Pole-zero map

-20 -15 -10 -5 0 5

x 10
4

-1

-0.5

0

0.5

1
x 10

5  

Real Axis

Im
ag

 A
xi

s

-800 -600 -400 -200 0 200
-800

-600

-400

-200

0

200

400

 Magnified near the origin 

(b) (a) 

( )[ ]DBAsICsJ +−= −1)(  .                                                                                                       (14) 
 Now, we examine the heat release dynamics model acquired by linearizing the four step mechanism.  The model has 

five poles and five zeros as shown in Figure 1 (a). The poles represent characteristic time scales of the coupled chemical 
processes, while the zeros represent the interactions among them.  The frequencies of four of these modes are located over 
10kHz and one pole is near the origin.  Considering that the frequency range of the acoustic modes in a typical combustor is 
100-1000Hz, the effect of the high frequency dynamics on the system is negligible. Therefore, we approximate the model in 
the range of interest using the pole and zero which are located near the origin (Figure 1, (b)) as follows:  
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As before, the parameters, 2α , 2β  and σ are functions of mean residence time and mean equivalence ratio. Compared to 
Eq. (4) acquired using a single–step mechanism, Eq. (15) has an additional zero at σ−=s .  It is observed from a typical 
calculation that σ changes from positive to negative values when either equivalence ratio or residence time are reduced.  
Moreover, the critical point, where 0=σ , corresponds to the maximum heat release rate point. The static gain 2β  does 
not change its sign in this case remaining positive over the entire range. This shows that the phase change mechanism 
around the condition of maximum heat release is no longer due to a sign change of the static gain. As a result, we observe 
that in multi-step mechanism  

1) The phase between rQ&  and im& varies continuously as the mean conditions change, 

2)   The phase between rQ&  and im& depends on the perturbation frequency in im& . 

Figure 2 (a) clearly shows the above characteristics. First, the rQ& - im&  phase changes rapidly around 76.0=φ . Contrary to 
the single-step kinetics model result, this change is “continuous” for the 50 Hz acoustic mode (Using Eq. 5, a jump in the 
phase is observed at the maximum reaction point, as shown in Figure 2 (b)).  The 50 Hz mode experiences this phase 
change over a narrower range of equivalence ratio than for the higher mode (200 Hz). As mentioned before, the time 
constant of the zero, σ , decreases “continuously” as the equivalence ratio decreases introducing that phase change.  
Moreover, in Eq. (5), the phase change is observed when the sign of the gain changes at maximum heat release, thereby 
generating a jump in a phase.  Also, one can expect that the higher frequency oscillation mode will experience a phase 
change first because the zero moves towards lower values thereby affecting the higher mode first.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 1 Pole and zero map of WSR model  for 83HC at 7.0=φ , smkgmi

3/732=&  and KTi 600= . 
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Figure 2 Phase change between rQ&  and im& of  WSR model for 83HC at KTi 600= , 

smkgmi
3/1000=& using  (a) a four-step mechanism and (b) a single-step mechanism. 
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