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Abstract
   In one-dimensional calculations of pulsed detonation engine (PDE) performance, the exit
boundary condition is frequently taken to be a constant static pressure. In reality, for an
isolated detonation tube, after the detonation wave arrives at the exit plane, there will be a
region of high pressure, which will gradually return to ambient pressure as an almost
spherical shock wave expands away from the exit, and weakens. Initially, the flow is
supersonic, unaffected by external pressure, but later becomes subsonic. Previous authors
have accounted for this situation either by assuming the subsonic decay to be a relaxation
phenomenon, or by running a two-dimensional calculation first, including a domain external
to the tube, and using the resulting exit pressure temporal distribution at the tube exit as the
boundary condition for one-dimensional calculations.  These calculations show that the
increased pressure does affect the PDE performance.
   In the present work, a simple model of the exit process is described.   The planar shock
wave emerging from the tube is assumed to transform into a spherical shock wave.  The
initial strength of the spherical shock wave is determined from comparison with
experimental results. Its subsequent propagation, and resulting pressure at the tube exit, is
given by a numerical blast wave calculation.  The model agrees reasonably well with
other, limited results.
     Finally, the model was used as the exit boundary condition for a one-dimensional
calculation of PDE performance to obtain the thrust wall pressure for a hydrogen-air
detonation in tubes of length to diameter ratio ( L/D ) of 4, and 10, as well as for the
original, constant pressure boundary condition. The modified boundary condition had no
performance impact for values of L/D > 10, and moderate impact for  L/D = 4.

Introduction
  At some point in the cycle of a pulsed detonation engine, a strong compression wave
will arrive at the exit of the tube, and propagate into the region beyond the detonation
tube.   This wave will either be the detonation wave itself, if the tube is completely filled
with combustible mixture, or the transmitted shock from the interaction of the detonation
wave with the combustible gas-air interface.   In calculating the cycle, it is necessary to
know how this wave reflects at the tube exit.   For weak waves, it is well known that a
shock wave reflects at the exit of a tube as an expansion wave, with the exit pressure



approximately constant1.   This result is so ingrained that it is tempting to use it even for
strong shocks such as those found in the pulsed detonation engine.   However, this is not
true for strong shocks.   Rudinger1 concludes that in this case, the outflow will be
supersonic, and since pressure waves can not travel upstream in supersonic flow, the
pressure can not immediately return to ambient conditions.  He states that “final
expansion to the exterior pressure must then take place outside the duct, and is of no
concern here”.   For the calculation of a PDE cycle however, it is of concern, as it can
affect the result.    Considered here will be the case of an isolated detonation tube, which
though not representative of an actual engine, is typical of many experiments.
     Kailasanath2 treated this problem by assuming that, after the flow became subsonic,
the exit pressure decayed as a relaxation process, and found that the higher pressure at the
tube exit increased the PDE performance.  However, it is not clear what relaxation time
should be used.   Ebrahimi et al.3 performed two-dimensional calculations, including a
region external to the tube, to establish a pressure-time relationship at tube exit to use in
one dimensional calculations.   These two-dimensional calculations must be repeated for
calculating a different geometry, so this destroys the easy use of one-dimensional
calculations.   What is needed is a simple way of applying a two-dimensional ( or more )
result to a one-dimensional calculation.   This is the objective of the present work, and is
achieved by using a model of the external flow.

Model Description
  The planar wave leaving the exit of the tube will be the transmitted wave from the
interaction of the detonation wave on the mixture/air interface (assuming a fuel-air
reaction).   The solution to the problem of a shock (or detonation) wave incident on an
interface is given by Rudinger1.    Taking the conditions behind a hydrogen-air detonation
from Borland and Ragland4, the transmitted shock in air is found to have a Mach number
of 3.385, with a pressure ratio of 13.2.  This is the initial pressure at the exit after the
shock emerges.   Although this is a one-dimensional result, it will hold until expansion
waves from the edges have reduced the pressure.  The development of the shock wave is
envisioned in fig. 1.  On emergence, the wave is still planar, except at the edges - fig. 1a.
As the edge waves grow, the wave becomes more spherical, although at the beginning,
there will still be a planar portion near the axis – fig. 1b.   At later time, the wave will
become essentially spherical – fig. 1c.   After this it will grow as a spherical wave.  That
this actually occurs can be seen from photographs of a similar situation, namely the
precursor blast wave from a gun5, showing an almost spherical shock wave propagating
ahead of the bullet.  For calculating pressures, it is necessary to ascertain the strength of
the spherical shock.  For this, recourse is made to the experiments of Ungut et al.6.  Ungut
et al. measured the centerline trajectory of the transmitted wave from detonations in
various mixtures in a tube of diameter D, expanding into a larger region, also containing
the combustible gas mixture.  In cases in which detonation was not re-initiated in the
larger region, the transmitted wave stays constant in velocity until about 0.7D, decelerates
rapidly to 1.3D, and then decelerates more slowly.  From this, it will be assumed that the
wave can be considered essentially spherical at a radius of 1.3D, which will be defined as
the initial radius R0 of the spherical wave.  At this point, the experiments indicate that the
wave velocity is very close to half the detonation velocity.  Thus the spherical wave



pressure jump at R0, ∆P0, will be that corresponding to a shock wave travelling at half the
detonation velocity.  This defines the spherical blast wave.  For hydrogen-air with a
detonation velocity of 1971 m/sec, ∆P0 = 8.58 ats.  From this point on, the wave will
propagate as a spherical blast wave.  The propagation of a spherical blast wave has been
calculated by Brode6.    Initially, if the wave is sufficiently strong (∆P > 9 ),  the pressure
at the centre of the wave system P(R= 0) is 0.375 of the pressure behind the shock front.
Later the value of P(R=0) is a more complicated function of the shock pressure, and drops
below atmospheric for a while, returning to atmospheric pressure when the shock
pressure ratio is 1.14.   A given shock pressure jump ∆P will occur at a dimensionless
shock radius λ = Rs/ε , according to the relation:
                                ∆P  =  0.137/λ3  +  0.119/ λ2  +  0.269/ λ  - 0.019   (ats)
in which ε = (E/P0 )

1/3  is a length determined by the energy E which produced the shock
wave.    For the detonation case, since  ∆P

0
 is known when the shock is at a radius Rs =

1.5 D , the value of  λ follows from the above equation , and hence the value of  ε can be
determined.  For hydrogen-air detonations, with ∆ P0 = 8.58, λ = 0.282, and ε = 4.61 D.
The pressure at the wave center, P(R = 0) is given by Brode in terms of a dimensionless
time τ = t c0 / ε , in which t = real time, and  c0 is the speed of sound in the ambient air,
and is shown in fig 2.  With ε known, this can be converted into real time.  This pressure
is the pressure at the detonation tube exit, which is the desired exit boundary condition.

Comparison with other results
    Moen et al.8  have reported measurements of the overpressure at three distances from
the exit of the Norwegian large explosion experiment, and also report a calculation of
overpressure versus distance by Hjertager for a methane-air detonation.  For methane-air,
The detonation velocity is 1801 m/sec, and hence ∆P0 = 6.96.  For this experiment, the
exit diameter is 2.5 m.   With  these values, the overpressure versus distance can be
evaluated using the above model, and gives overpressures of 94% at 10m, and 70% at
40m, of the values found by Hjertager.   This is quite good agreement.  Unfortunately,
there do not appear to be data for the detonation case.
   Ebrahimi et al. performed calculations of the pressure distribution at the end of a 20
mm high detonation tube assuming a cylindrical blast wave.  Since a cylindrical blast
wave will decay at a slower rate than a spherical one, there is not a direct comparison
here, but there should be qualitative agreement.  A comparison of the prediction of the
present model with that of Ebrahimi et al. is given  in fig. 3.

Application to PDE calculation
 A one-dimensional, time accurate, CFD code for analysis of PDE cycles has been
developed at the NASA Glenn Research Center by Paxson9.  Using a high-resolution
scheme, the code numerically solves the governing equations for a reacting, two species
(single progress variable), calorically perfect gas with specified boundary conditions. In
the code, a non-dimensional time is used, defined as
                                                    τPDE  = cref  t / L
where cref  is some appropriate speed of sound, and L is the length of the device.  For
hydrogen-air detonations, ε  = 4.61 D, from which;



                                        τ===  τPDE ( L/D ) (c0 / cref ) / 4.61
in which  τ  must be measured from the arrival of the detonation wave, or transmitted
wave, at the tube exit.  From this, the exit pressure can be found from fig. 2.  Calculations
for tube L/D ratios of 4, and 10, as well as a calculation with the constant pressure
boundary condition,  have been made, and the results are shown in fig. 4.  Plotted in fig. 4
is the evolution with time of the pressure on the front, i.e. thrust, wall.   The pressure
distribution  with the constant pressure boundary condition was identical to the L/D = 10
result.  In these cases, the outflow from the tube is sonic, or greater, until after the
external pressure has returned to atmospheric, and so the external pressure distribution
has no effect.  For the case of L/D = 4, the below atmospheric portion of the external
pressure does influence the pressure in the detonation tube, lowering it, and hence the
pressure behind the detonation, giving less total thrust.

Conclusions
   A blast wave model appears to give realistic values for the externally imposed pressure
distribution with time for an isolated detonation tube.  However, it is only for tubes with
L/D ratios less than 10 that any effect on the thrust is noticed, when the effect is to reduce
the thrust.  The pressure decay is even faster than the fastest decay used by Kailasanath2.
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Fig. 1. (a) Shock wave emerging from tube is mostly                    Fig. 2.  Pressure at wave center versus
           planar, (b) at a distance slightly less than 0.7 D,                            dimensionless time, which is the
           only small planar portion remains, (c) at distance                          desired boundary condition.
           greater than 1.3 D, wave is almost spherical.

Fig.3. Exit boundary condition with blast wave model         Fig. 4.  Pressure on the thrust wall of the PDE
         compared with boundary condition of Ebrahimi3.                  versus time, for two values of tube L/D.
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