
prepared for plenary lecture at
17th International Colloquium on the
Dynamics of Explosions and Reactive Systems
July 25-30, 1999, Heidelburg, Germany

CFD – Bridging The Communication Gap

James J. Quirk 1

Center for Simulation of Advanced Rockets
Digital Computer Laboratory MC-258

University of Illinois at Urbana-Champaign
Urbana IL 61801, USA

jjq@amrita-cfd.org

Abstract

Modern computational fluid dynamics (CFD) is a complex amalgam of numerical analysis, flow physics,
computer science, not to mention common sense. As such, it is becoming increasingly difficult for individual
workers to remain wholly self-sufficient. This talk will explore some of the inter-disciplinary, communication
problems that must be overcome, before this relatively new research field can reach full scientific maturity. To
avoid undue subjectivity, the talk will present a series of numerical case studies which serve to illustrate the
fundamental changes of perspective in moving from algorithm development, through software implementation,
to end application. These case studies have been automated using a purpose-built, computational operating-
system and can be reproduced – in their entirety – by any interested party, for no cost other than raw CPU-cycles.
The talk will explore how such automation opens up the possibility of improving simulation capability through
massed scrutiny: thus doing away with the present cottage-industry mentality, and its concomitant vagaries,
where “codes” are crafted on a one-off basis. The present extended-abstract provides some pre-requisites for
understanding this computational philosophy so that the talk itself can concentrate on specific applications. Full
details of the general approach can be found at http://www.amrita-cfd.org/FAQ .

Introduction

There can be little argument that CFD has matured to the point where it earns its keep across a broad range
of applications (witness http://www.cfd-online.com). Consequently, the provisional title for this talk
– What CFD Can Do For You – is clearly outdated. Interestingly, this title was chosen by a colleague (an
applied mathematician) who graciously stepped into the breach, following my unavailability, when the conference
programme was being drawn up. Upon reflection, possibly a more appropriate title for the times would have been
– What You Can Do For CFD. The very same words, but a talk with a completely different message to convey.

Taken together, the two prospective titles illustrate the gulf in thinking between a CFD software-developer
and a CFD end-user. Whereas the typical user begs-borrows-or-steals “a code” for a one-off simulation, focusing
firmly on the flow physics of the application, the author of “a code” looks to spread development costs across
a wide range of projects with different sets of users, and by necessity is often forced to concentrate more on
software issues than on physical issues. Thus to a user: “a code” is purely a means to an end and is often viewed
as a disposable entity whose intellectual content may not even be acknowledged. But to a developer: “a code”
represents a considerable investment of effort, much of it emotional, and each new user (although welcomed)
adds to the programming burden. In this extended abstract it seems appropriate to identify concrete mechanisms
for bridging such communication gaps: because, ultimately, miscommunications between related disciplines act
to limit CFD’s potential. Hence the actual title of the talk.

The first step in finding a communication-solution is to recognize that there is indeed a communication-
problem to solve. For instance, in response to:

considerable concern with the quality of published numerical results 2

the American Institute of Aeronautics and Astronautics (AIAA) have issued the following editorial policy:

The AIAA journals will not accept for publication any paper reporting (1) numerical solutions of an engineering
problem that fails adequately to address accuracy of computed results or (2) experimental results unless the
accuracy of the data is adequately presented.

1Formerly of Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena CA 91125, USA. Now in transit to Los
Alamos National Laboratory, New Mexico, USA.

2This quote, along with the next three quotes are taken, without permission, from AIAA information sheet: “Numerical Accuracy and
Experimental Uncertainty AIAA Journals.”

The effectiveness of the AIAA policy hinges on their chosen definition for numerical accuracy:

The accuracy of the computed results is concerned with how well the specified governing equations in the
paper have been solved numerically. The appropriateness of the governing equations for modelling the physical
phenomena and comparison with experimental data is not part of this evaluation. Accuracy of the numerical
results can be judged from grid refinement studies, variation of numerical parameters that influence the results,
comparison with exact solutions, and any other technique the author selects.

and the extent to which they enforce the diktat:

For computational papers, the author must provide an adequate description of the numerical solution procedure,
if not documented elsewhere. In addition, the complete governing equations must be specified with sufficient
detail along with the input parameters to the code so that a reader could reproduce the results of the paper.

If CFD were a completely mathematically rigorous discipline then there would be no need for the above pol-
icy statement, as any investigation worthy of publication would automatically be reproducible via an unbroken
sequence of logical steps. Unfortunately, the typical CFD investigation contains numerous software mundanities
which act to limit its integrity. This is especially true of modern algorithms, such as adaptive mesh refinement
schemes, which do not have a concise mathematical recipe but achieve their ends through convoluted program-
ming. With the best will in the world, the more a CFD investigation relies on custom-written software, the harder
it is to satisfy the diktat that the work should be reproducible by the reader. Even supposing the necessary infor-
mation were available, the software-engineering needed to redo the work would prove prohibitively expensive for
all but the most persistent. On this score, matters are compounded by the apparent unwillingness of the scientific
community to embrace the need to train its members to program efficiently: a criticism which deserves some
explanation.

Casual programmers (i.e. individuals with no formal training in software construction) who switch from
an old-fashioned language, such as Fortran, to a modern one, such as C++, often badger their peers to follow
suit: flushed by the successes of an improved programming style. But before doing so they should ponder this
assertion, made by the architect of C++[4] (my underlining):

... as programs get larger, the problems associated with their development and maintenance
shift from being language problems to more global problems of tools and management.

In other words, there is much more to constructing software than selecting a programming language and learn-
ing to use its syntax. This perhaps explains, but not pardons, why many “a research code” is unavailable for
inspection: the author is embarrassed by its construction.

A similar assertion can be made about CFD simulations:

... as simulations get larger, the problems associated with their development and maintenance
shift from being algorithmic problems to more global problems of tools and management.

The upshot being that if the right tools and management were put in place then many of the concerns which
prompted the AIAA computational policy could be tackled head on. For instance: grid refinement studies, nu-
merical sensitivity studies, and comparisons with exact solutions, are all time consuming activities, and so it
should come as no surprise that they are not performed as often as they should be. But if such activities could
be fully automated then comprehensive validation tests could be run routinely, and even standardized. Of course,
recognizing the need for the types of tools and management to do this is a far cry from actually producing them,
and an even farther cry from successfully convincing a conservative community of the need to change its work
practices.

Back in 1995, I started converting an adaptive mesh refinement algorithm into an interactive teaching aid so as
to allow students to explore the practical aspects of compressible, computational fluid dynamics. The aim was not
to turn experimentalists into heavy-duty programmers, but to produce a hierarchical, open-ended system in which
individuals, reluctant programmers and CFD experts alike, could engage in unambiguous, scientific dialogue.
Over time, Amrita has grown into a full-blown operating-system for automating numerical investigations[3].
This system, although far from perfect, demonstrates how the AIAA diktat could be realized in a methodical,
watertight fashion.

The remainder of this extended-abstract will attempt to add substance to this claim by presenting a concrete
numerical example. But before doing so, it is worth noting that the current Amrita installation-kit runs to over
520,000 lines of source-code, and so it provides a tool to enable any interested party to navigate the source in
a painless fashion: see http://amrita-cfd.org/source-code . An examination of the source reveals
that Amrita could legitimately be called any of following: an educational aid; a research tool; a communication
protocol; a document preparation system; a quality assurance system; an archive system; a device-independent
compilation system; a literate-programming system; a run-time shell for “legacy code”; a computational operating
system; a labour saving device; a computational philosophy. In fact, almost anything except “a CFD code.”

AmritaMailit::run_T5

Experience shows that reluctant programmers are easily put-off Amrita by the sheer size of the system. But the
system is large precisely because it is striving to take care of all the tasks a reluctant programmer should not be
expected to cope with. It also comes as a shock to many that the system has its own programming language (also
called Amrita, but note the typographic distinction). The system needs its own language to be able to articulate
the wide range of tasks needed to automate a numerical investigation. For instance, this six line Amrita fragment:

fold::file $abstract -> listing
fold::latex { typeset listing

\begin{verbatim}
*listing

\end{verbatim }
}

produces this listing of the abstract you are currently reading:

... ICDERS top matter
Latex2eHead {

dir = 4ICDERS
file = jjq.tex

}
... title
... abstract
... introduction
... AmritaMailit::run_T5
... closing comments
LatexTail
Latex

Several observations are needed to preempt the inevitable question – Why bother?
First, re-read the AIAA diktat; it effectively stipulates that precise and complete documentation is an integral

part of a numerical investigation. Here, for preciseness the Amrita fragment is typeset from the actual working
script, and in turn the script-fragment typesets the abstract from the original 3. In so doing, the abstract is
folded so that its structure is immediately apparent to the reader 4. A computer scientist would call Amrita
“a literate programming language,” such languages are designed to produce self-documenting programs. The
rationale being that manually prepared documentation is both onerous to produce and rarely a true reflection
of a program’s innards, but if the process is automated then it becomes straightforward to produce error free
documentation which evolves as the program evolves. Through its use of program folds, Amrita could also be
called “a cooperative programming language.” If it needs to utilise a specialist language to accomplish some task,
the new language can be folded into Amrita as LATEX is folded in here. In essence an Amrita program can be
viewed as a tree in which each branch can, if needs be, employ a different parser. The main implications of this
are: Amrita cannot become outdated and superseded by another language, because with the right plumbing it can
always fold in the new language (e.g. fold::python); reluctant programmers need only unfold an Amrita
script (fed to them by an expert) to the level of complexity they feel comfortable with; all the activities needed to
validate a numerical investigation: setting up a problem, running a simulation, plotting results, documenting the
method etc., can all be freely intermixed within a single program.

Amrita is not a random collection of tools and much of its utility stems from the seamless manner in which
it operates. For instance, consider the AmritaMailit shown in Figure 1 (a), it contains all “the user-supplied code”
(albeit in an encoded form) needed to cajole the system into producing Figure 2. The packing and unpacking of
an AmritaMailit takes place automatically in such a fashion that anyone with access to an Amrita installation 5

can now springboard directly off the efforts of the original author. In this case: Prof. Hans Hornung, Director of
Graduate Aeronautical Laboratories California Institute of Technology.

3The following is given for completeness, but need not be fully appreciated to follow the main argument. fold::file is an Amrita
keyword which takes the contents of the file identified by $abstract and folds it following a specific set of rules, depending on the filetype,
and stores the resultant text in a string token called listing.fold::latex is a keyword which embeds a block of LATEXinto the Amrita
script. The * is an operator which expands the contents of listing much as * dereferences a pointer in C. Full details are given in [3].

4Latex2eHead is an Amrita standard-library procedure which constructs the head of a LATEX document – here jjq.tex. LatexTail
writes the tail of the document, and Latex runs latex, dvips and bibtex – having first requested bibitems from a series of local and remote
servers – to produce a PostScript file jjq.ps.

5An Amrita kit can be downloaded by anyone with a genuine commitment to see the system succeed. Interested parties can obtain a
90 day licence from licence-mgr@amrita-cfd.org which automatically rolls over to a life-time licence upon receipt of a suitably
polished AmritaMailit. Before requesting a licence, please make sure the system will run on your machine: for a list of platforms, see
http://www.amrita-cfd.org/FAQ .

-----BEGIN PGP SIGNED MESSAGE-----

AmritaMailit::run_T5 {
origin {

Amrita v1.44 R22-03-99
user James Quirk (aka jquirk)
date Fri Apr 9 11:04:36 CDT 1999

}
operation {

cd T5
amrita -mailit run_T5
amrps images/T5_shot1850.ps
amrps images/T5_shot1854.ps

}
script {

M’XL("!4E#C<‘‘U0U+G1A<@#M’/USVL8R/_NON+HT‘<R’)!"D3$G’L5V’/-OQ
M‘](XDW@\LCA‘L=!1?133-/_[V[W3)TC@OCJ\]E4[8R-TNWMWNW=[NWMW#-7Z
MDZ\-I"FUVRIY0MJ**C7ADY"F*CY]D‘AIM:5&4U&4MDR(+$E*XPE1OWK+‘#S’
MU6Q"GGSZQ3/LNVP\W=’L7;1GQS!4ZX[KC0SJ?+UQ\’#]2RV5ZU]692G7_RX@
MIO^AZDR9*S]7I4>N‘Z9SJ]7,UK_2"/6O-F&@$+FAR/(3\MCM2(5_N/[’S!QU
M.H8U9N3S’NAB[\N>,Z>Z,5Z2T\/S\T-".ITND6M2>\^A+IEJEM/IG‘,^X,)[
M*?96F\U-_C;^TM1FMR-M%;4O%-\EC?C;^51SJ"5P_]=R^:=‘VOQO/G(=6^>_
MT@KGORHWQ?QOYO-_%Y"8_UF37VZD37ZUIN:S_^\.L?D_HF/-,UWGT>O8-O])
M0UGQ_QI*6\GG_RX@FG\.,W^E-LP_F]&;L9G/P7\$P/PWC=NOFP-X>/PG2VJ#
MQ_]J2\WCOUV‘K_^>9;@#-J-]ZC#/UJE3TV:/UMTM]E]NM.10_[(,OJ"L2I*:
MV_]=P-QF.EG3/D:"FN>RN>9.R4’A,PP&P]4Z’7TQ^M*!\8+EPG,4)>0SP85D
M1F?,7A*;HBSIC%HNYP1P:-O:<F#\1AUR<=J[?]U5)‘0L_9+"[-8SS!&!VO4I
M,2R73FS-9;;/*V7)NF6CY0VL6SZ&,2Y^\Q28.:RXK[,1K0?E^Z42<:?4V@LM
MCZAX;D,M4.\$6-O@‘,\I%-@A6X),(AJ?[(7+[JC5Y6V]"5‘K0.[9CL$LPL;C
M-9I8’\>&1:NN9U’R\N@T@>CWT1?ZK3Y!Y]@@/‘PGQU("]TOBVXEG4OOD%T]S
MH0%.HFAN>A/#0J8W(+9$T4O-,?0CZ.(IM2B7M,@%)!HD1$W6A1VAZ%/0.4<9
MF]Y]U31FADM’S]A<,*TZ<]-P5ZDFMC’B#X)Q=6RX0)35Q]CC7+,=2K@.2%(’
MY*F/1:V1,19C#!X)CO7<K4F";_\’4Z;?G6E+:E_:[-:DLQW:_T9#"?W_9@-S
M‘7*SK>;V?R?‘[?^:]H/YOV*R8,II,^I2.S(M$VTVTX(O:*&:89&?*‘B*E%ID
MN?R\0$@5E?AIA%2BF78?+PH+[%[,6,0+^B11T)!J>Y$5^4)^J/KK2,H*!,$P
MV&=<+,@QFVE&L&3‘^^0+;HEPG?I!KLB514NJ3%O2BY3"@Y3"P1U=T-$E,S7[
M%.U@OUOH1[8+*\M:(6/M&S#30WO_DT’-P’#B^G$;]%NJP5(KRVI34F/%H‘-?
M7E(@%_[>_#IVRXI%E"#9><7VRT6N)Y+)1_/LX,>8(*HX’GEHERKTOMYL8I?
MW‘_7]0+P#_’%<C8/^**2ZV‘5:F7‘+L4DF]85@’?/%K>C9;S*’_JOWG3ERMNN
M9W^XKOS<Y3S+CF$5E?)EKXQOPU;‘2"N5/ZZN.W$HW);?‘T%9+?,N2+4&?B^5
M*I==^46\&6.;4L>U*8HNK1G2.@7V9+7AH!‘DDGP*_!HC‘F$)*I_Z#P^(E\RS
M1IJ]/&*P_L4]‘11Q9B’‘!4IYQ$=W!_R@L4GUV’H]V%AZLK’T’99J)K,FI->5
MR=AF,_*ZVY1A_29MB71@;::.;ANW-"’E;0S:G(&L2!U"[UU;F\-,<NDV*H@V
M@*JY6BV.L8?)&L@,]’10V-I(FZ,8R4S3IZ‘!.^"1KI]SZDP/?9*HG:B8]!(2
MMWL%?$R41::O8/>BDEC[2>0TI;>HSS_063^"‘FH;6K)=F\I1Q-283,%C.Z:6
M8[C+4UL;&8"[K2TS[8[&1_>($1-FTDH/N7"CKZM$G#7+’;P_‘8’_EUR(’M/[
MV^[_R6TI\O]:#?3_FHJ4^W^[‘.’_K;@AOO?’W2?PSL0WC(’A6Q0*\\BM2QQ.
M?(.FU]X<SR-!2H1>X"%Z‘4O7X_.YYTSUQ8@44D/P*’(7B8OU0-U’?#$V3-KE
M==0<6U]%^=:P=-.#_NT?GO=O!F_.ZO#9&Q[NIWL-@[<O^V_>#GL7)V3P[W?]
M2ZEX<5KIG5=>GU>.KRK’[RM7E?>5WKO*ZT$IG8’@?C-\?]F[6(O](Y2+(0D8
M9R(=OSPCO-*-&%=%$/;/W!<MBH9>G):R&X<D[_\8"3:6=SD=X^CP[‘S1.IW3
MD^’-\,V_3BZ*ST1-G4[_6:6?P;DOPQ#KEX^OTHNOCJ"XV))J!_U2)M)E#Y":
MY</AX451I%‘R*CM^@VY"E<O\X.+T0,YT&@$3’0E$?;T%%6#XZF1XB%/II[,W
MA\/BZX/7@ZI2‘D>U#JY+;1-E7^$?7>CH0?’JJ-I7E%)=J7%W^^C-H,@Y9VG%
M9T%\%GWEH-B7@46I+-K1.^B]@W;46YO;<%7L55Z7>!NJ_7)4ZR::]P%-OSSH
M76PC.+DX!HFF%V\JZY\,W_8O,NDV),J2Q@/]"H)^X’PM/;5J/&9WJQ@;<FYD
M8]J-"/_J-+**"4*<>)T_;%^2WE8(1VPVATYPZX[]$+W9(""17<..DZ#C85H-
MB]D<K/)ZF@V_W<^9[1(>Q_(E(F;?<R_MKP:^_Y?AQ3^.’[AM_[_9;(?^7[.!
MYW]:<J.1^W^[‘.[_96@_\‘//G7#>A]DUEX’5TRQPN7B"28ZYA‘’FYU/?I"PX
M>P."</0FZ_U7;SY<A^8"LQVF-G’(!\;8[^S^_G?XO"9%[=8I(N:!<5WE%*52
MN5@(697(BV(A;$2)A/8LQN\>^;%5?I_^‘+__?W.U,O\’^M0TJ$VMWDR;T$<*
M‘[?M_RKM5C3_,1:4U7:CE<__74!B_B>U’TQ_7-‘=SZ;D@]21K_W)+=6>0]A$
M1II]9U’’(6Q,#"02))C@-<:&SGTBI/OQNHMJ11+‘LJ(RH%M0[8Z,J>9"’<Z:
M’8DL#]@3I’<HIA9CP63,O$3(,GY\&RL;>Y8>I-:XX1D,Y!‘?,[-%GN@N7G&+
M<_6A:ER7RF5PF=_S%^^#%\+9’@R4#.)/G/A31/R)W^*1_;4W9\’R..VSFL
MI@YM$R:2HRY747T3ADP!51&H3J‘\’Y6W2%2%N6WE0/#BSTG3A]0SP\(T8\CD
MPS6IOL"W%>)GY!8N6>ERA%LM‘&:I7BP‘KG@6WA]=.E-82T#\?)\@&$DBS5Y(
MC)+RP@6;C&1SD[EB,‘DK3&8_Q#A]N’[Q#S#+.P/?_I]#!#14’]/HQV"S_9<E
M50G._RB2(N’^;Z.9^W^[‘6[_8]I_^,XO7A8(K>US-=JG73#[;F2(LR)\&D<T
M\\"3W.^2H7J#+‘KXKS:/<-BOU#:U)<?QG]=P8*’‘D\H17WYV_.&;N[8V=LD,
MPM(?HWPD/TE2]‘_=.$N@Y&AK&4G<RPRZ6.N2.L=*C83#W*6/’FS#F&QA6*3@
M=Z+.&U^(=V&UO1-Q+H<2RYM1&PRF&4@F%I&#U13A^EK1.D-^6$N;&#K1F043
MP%K+>S@+‘_>M887FPD])4.C07J[X3GH"9FN5:[F2A(C%;10<0Q/-U‘VWCB?5
M_?MI,!1JD]\VDKM3‘\<:C"&I(E442:K(DK218@I+F:‘‘Y=RR>T[8E#CQ1D)F
MN6P>)U2>U]I0G8+_OV]5FM]O)+]GXKE+OM]<SS)$W(R’T9OGX$Y[P;]O499K
MV?E)’#B:3<5IC.9#I(4G‘QT8A!2’QW:*+QL&3W/G@Z?Y%Q\\K>]K,A\\3:!]
M7E&5?/"L@G]1)6/H4-MF-GBNCH-^Y[.58?.,’^P<JF+YXK;MF[0<JK!_6S/(
M\25EP0\PKC([Y!@O36]]7\HP33HBNF’K:+;O6:6PA#]?‘PX$.=!2B1]P>+[I
MT">$‘K?@PL0CB0,_DCCPPX6#,%QH)D@W!WYQD00Q((=P3S‘&R9‘/3Q6MH20#
M-3\5!$T7\4M:[X)%;2]9LB)[GK[7V0R::,‘B"6VE>#[#<C6S&JV88V,"’8AX
MKS"!U9AB5*G-IX;N@,,S22IL0-W+5-DXQF\T>.Z2MP.3NN‘GK6(Q&S-J@7‘P
M0VYKZX=AS\ZCYS01]K>4#Q/EK;7REUOHYW,CFS[]&&YB/A?0<J;Y)/.5P\B:
M‘XJ:NNZ\4Z\O%HN:4$-5’X]JS)[4N=M8+_AFO(#6-84^\’3@‘:WHQNG)B*G=
M4M.$T9>VQ1-#O3.]T61ML@+,N,N’!XSN;[!7:TO0FJT2G#D%,‘Z,CC&"D0!3
M97V0D,3!<D[7Z0@AI*!^O*43P_JL‘S=JI]E)@*#.C]^2<N"P?\PX"U>\K)$S
M.C.H=T\^/B6O:J<U\HK9EN>G"%:K!S.95?D#)&’,/%-;.^NT00B;"’Q1C$WP
MN$TZ=C.DD6R%8<T]-RVR22>+#NXS>Z:Y@CR3AHCE=!P<@H4%U>’;C>/B_G<U
M>;Q?*437:3=NI7(VP3’;)!LE8B/.9V[E$QROS>2#"-O9!.=W,]D(A’K@0VSG
M&-PO‘(Y/Q11SM#$M[A?B-SWVL_ED:)R$8\/5;F’\V%\^F[J9C0Q0.+_Y"#IQ
MP:R0I]VGI%#VE5C(G#D^X<=‘2R&A>+&=T!=7/R04+[82AB>O0T+4W\?OMA&&
MMSD‘D)"4?05D2Q%G>R##A[MJG"Q[6JZ].$/5GZ&E)BE&L"*0[EE752M+UI7;
M2F7*G8KN^EJV@55H2BK‘JBUQ5BH)6#75!*LM[HB_$_YW34D&Y_\HOP!V&1K#
MG=[_4X/]’UEMJ:JX_]?.\W^[‘’’^;U7[@9?KNPSQ!!_^6L!2Y._"])W(N%5?
M9&?<\&)=QGIKC(M52O:#7R$(##Y6L[]V&C‘ZE9*&’V3A3"?FOXEXT&]V@CNQ
MH’?B%/0H"‘*3&;R57IA,QRR<P0AX@CP^,T(O,+J5&%^KE[,B_R4-?VLC@>?G
M_U"\02HPL=K5,REJ71YNQ9;LC;C^8I)8F3?AG\=<DXV(O*=Q!R1+<’\ZX2KJ
M$&P2T6?LMT;X,?DHOY%?_GL(@/VW/>MF^#7OVF^S_Y(4VG^ES<]_RXJ2__[7
M3B!Y>E’8?6>NZ3RET27N@E5’F$O!&\T:/[\(-@WLM[W$L^!+B*=’/+VR]V4/
M_(A.9_TJ^<H)2)--N/V&3_S)J;TY<UQQ]))‘:‘>Q%=7T:9#‘+>*Z4\&LK=AU
M7UNG$*M;B$+DM9N,O,7"VTW<!$\Q4C/-AIH5"=8*&N8KDB_)PG"G1!^;7:GV
M/$A&F6S!/#?(ER9V=:(+[B-&++S?$O^MHT05#>F_K*/‘^41785(V\\0ZWB4Q
M00FCZ(L[MXLYY)!##CGDD$,..>200PXYY)!##CGDD$,..>200PXYY)!##CGD
2D$,..>3PMX3_‘%$47=$‘>‘‘‘
‘

}
}

-----BEGIN PGP SIGNATURE-----
Version: 2.6.2

iQCVAwUBNx5Ga7mgfLsjP/xJAQGyBgP+IShLMBKF6llx45xqa2k2PcwtLE1SKpZ6
vhDXoWVOsAIvhFw0itAcWL795gTt9GC+5GSDCsOhgxbuvaNGX7DnzAI5GUTOHQAE
t404V5496CyuwFyEBEhg3PO91DkEeB88n9+IiPNn41+5RuXHNIzwus36UfbiJOG3
hZoFGRWHJUU=
=C/qZ
-----END PGP SIGNATURE-----

(a)
InitSomeResources.amr {26 lines}
MakeT5Image.amr {116 lines}
SetSomeParameters.amr {26 lines}
ShockLayerProblem.amr {61 lines}
SkewedPolarGrid.amr {50 lines}
WeightedDensityGradient.amr {9 lines}
WeightedSchlierenImage.amr {16 lines}

lib/

run_T5 {24 lines}
T5shot1850 {9 lines}
T5shot1854 {9 lines}
defaults {1 lines}

studies/

T5/

(b)

EulerEquations {
space = two-dimensional
symmetry = cylindrical

}
lib::InitSomeResources
plugin amr_sol
logfile logs/T5
postscript on
foreach T5shot (1850,1854)

SetSomeParameters shot=$T5shot
ShockLayerProblem
solver code/body_roe
fold::amrita { check all is well

march 20 steps with cfl=0.8
flowout $hans::results/phase0

}
do n=1,$hans::phasen

march 300 steps with cfl=0.8
flowout $hans::results/phase$n

end do
MakeT5Image {

shot = $T5shot
}

end foreach

(c)

proc ShockLayerProblem {
... parameters

} <- hans::
... define the Domain
... define the SolutionField
... define the BoundaryConditions
... prime the adaption machinery

end proc

(d)

fold::amrita’composite { experimental-numerical figure
... reset graphics page
autoscale on $this
plotfile $ps

paste http://www.amrita-cfd.org/image/$T5shot $here
paste $overlay $ontop
... do labelling

plotfile
}

(e)

Figure 1:
(a) “The code” AmritaMailit::run_T5 is sufficient for any Amrita user to reproduce Figure 2:

unix-prompt-originator> amrita -mailit run_T5
unix-prompt-recipient> amrita run_T5.mailit

(b) The mailit unpacks itself into this directory tree. Other files are produced as the mailit runs, for instance: code/body_roe.src
contains the source for a patch-integrator and is compiled using the script code/body_roe.mk. The compilation process adds
bindings so that the patch-integrator can communicate with Amr_sol [3].

(c) The run_T5 driver script; the expanded Amrita fold, when collapsed would appear as:

... check all is well

(d) Amrita procedure to set up the computational problem. Interestingly, it has fewer lines than the procedure MakeT5Image.
The reason for this lies with the choice of syntax for defining flow problems[3].

(e) The Amrita fold within MakeT5Image.amr which pastes-up the experimental and numerical images into a single figure:
paste is happy processing both local files and urls; ditto for most other Amrita commands (e.g. solver). Where necessary,
digital-signatures are used to safeguard against “Trojan-horse code.”

T5 shot # 1850

P. Lemieux & H.G. Hornung

22nd ISSW 1999

M1 = 10:0

 = 1:07

�=R = 0:33

a = 0:00%

solver = body roe

T5 shot # 1854

P. Lemieux & H.G. Hornung

22nd ISSW 1999

M1 = 5:5

 = 1:13

�=R = 0:33

a = 0:00%

solver = body roe

Figure 2: Output of AmritaMailit::run_T5. The images show experimental shadowgraphs of a one-inch diameter
nylon sphere fired into propane, with results from numerical simulations superimposed (see [2] for details). The
AIAA definition on numerical accuracy is careful to distinguish the evaluation of a simulation by comparison
against experiment (as done here) from a true validation of a simulation which necessitates comparison against
an exact solution for the model employed.

The present AmritaMailit unpacks itself to the source tree shown in Figure 1 (b), and the main driver routine
is shown in Figure 1 (c). All told, there are just over 300 lines of Amrita, which for the competent script writer
represents about one day’s effort. Amrita scripts are short because they merely schedule work to be done by a
plugin computational engine, which is then trusted to carry out the work as it sees fit. But this does not mean
that an engine is necessarily a black-box. In the case of Amr_sol [3], which is built around a block-structured
mesh refinement algorithm, the instruction:

solver code/body_roe
causes a patch-integrator to be linked dynamically with the engine (unix-prompt> man dlopen). Dynamic-
linking is a powerful programming technique for constructing programs which can bolster their capabilities on-
the-fly. Here body_roe is a specialist component for integrating the two-dimensional Euler equations on a body-
fitted grid. It amounts to 388 lines of Fortran and is the one component within Amrita which is close to the
classical notion of “a CFD code,” but with one crucial distinction. All the work needed to schedule the T5
simulation and process its results live external to body_roe. Thus it can be thrown away and replaced by another
patch-integrator of the user’s choice without affecting the leg-work needed to produce Figure 2.

Amr_sol could also be termed “a code,” and is also a replaceable item within the software hierarchy, but
at over 40,000 lines, much of it dense logic, the label starts to become derogatory. On the other hand, to call
Amrita “a code” would be as nonsensical as calling UNIX “a code.” But some observations are in order lest
you think this is just playing with semantics. Amrita is a general-purpose, user-programmable system for or-
chestrating simulations and it is not tied to a single computational methodology (AMR or otherwise). Nor is
it tied to solving a single set of equations. Here EulerEquations is a standard-library procedure which
teaches the plugin a set of symbolic mappings for writing to, and reading from, the computational domain
using notation: RHO, U, V, P etc. The procedure could have been written by the user, but in the interests of
standardization the system provides a definitive version. Thus to satisfy the part of the AIAA diktat which deals
with governing equations, the clued-in scriptwriter could get away with:

grab::info BCG:Latex::[Document] from file EulerEquations.amr
parse token Document

which grabs a block of folded-information from the file containing the library procedure and then executes it to
typeset up the equations. Inside the script, the named information was introduced using:

fold::info’Document {
. . . body of fold deleted

where the identifier Document is a moniker chosen by the programmer. Thus the Document fold lives inside
a Latex fold which in turn lives inside a BCG fold.

The primary customer of the BCG information is a standard-library routine BasicCodeGeneratorwhich
constructs CFD components upon demand 6. Here the routine InitSomeResources runs:

EulerEquations
plugin amr_sol
BasicCodeGenerator {

solver = body_roe
scheme = flux-limited’operator-split
grid = body-fitted
document = yes

}

to produce – on my office machine – the shared-object code/AMRSO/serial/Solaris/sparc/body_roe.so. In addi-
tion, a 30 page document is constructed which explains the solver’s construction. This document can be used
either by a student to learn the basic construction of “a CFD code,” or it can be used by an expert to see how to
plumb in “third-party code.” In principle, any explicit integration scheme, developed for a topologically rectan-
gular patch, is a candidate for linking with Amr_sol. The motivation being that “a serial, single patch code” once
linked with the engine becomes – on a parallel machine – “a message-passing, adaptive mesh refinement code.”
This is possible because all the AMR machinations and inter-node data transfers are orchestrated external to a
patch; a strategy which proves efficient for the target applications for which Amr_sol was designed[3]. Of course,
many details take place behind the scenes to allow this to happen, and therein lies one reason for the seemingly
bizarre emphasis of this abstract for a colloquium on the dynamics of explosions and reactive systems.

Even with my extra page allotment, over the standard length abstract, there is not enough room to fulfill the
AIAA diktat on a meaningful problem. This statement hinges on the interpretation of reproduce; the one point
where I part company with the AIAA and most other individuals in the CFD community. The thrust of this
paper has been to demonstrate that with the right tools and management a CFD investigation – as distinct from
an isolated computation – can approach the reproducibility of a theoretical investigation. There is no need to be
resigned, as the AIAA appears to be, and bracket numerical investigations with experiments in the reproducibility
stakes. Simulations are inferior to experiments in many ways; their superior strengths, however, are portability
and repeatability. The fact that CFD developers and end-users are not exploiting these strengths to the full will
not result in an apocalyptic spate of planes dropping out of the sky. The problem is more insidious than this and
essentially pertains to the division of labour needed to advance CFD to scientific maturity.

Judged by the teraflop yardstick – beloved of computational grand-challenges – Hornung’s computations are
small beer, because they are so cheap to run. But his intellectual contribution lies not in the CPU power needed
to run the simulations, nor with the construction of 300 lines of Amrita script, but in the physical observations
drawn from an extensive numerical parameter study[2], of which just two results are shown here. Although the
experiments shown in Figure 2 are essentially inert, they were inspired by an earlier set in which the projectile
initiated a detonation wave[1]. Therefore it is pertinent to ask what script changes would be needed to be able to
simulate these other experiments: the answer depends on the choice of reaction model.

EulerEquations could be changed to ReactiveEulerEquations and given the reaction parameter
model=1step-Arrhenius, for which BCG could be coaxed into generating one of 100+ different patch-
integrators. Then, after the addition of a heat release and an activation energy the reactive simulation could be
run as readily as a homework problem given in an introductory course on CFD – How? Amrita is designed
to allow simulations to be scheduled independently of the mathematical complexity of the physical model, and
independently of the cost of the simulation 7. The clued-in scriptwriter could incorporate the necessary changes in
a literal 5 minutes. But if this reaction model proved inadequate then life becomes more difficult. A change could
be made to model=3step-ChainBranching which – for the current installation kit – would reduce BCG
down to just one solver, which may or may not be up to the job. Then if further improvements to the reaction
model where needed to simulate the experiment, the 5 minute job has turned into a four year PhD thesis: unless
outside expertise can be brought in to bridge the gap. Hence the need for “a cooperative computing system.”

In many instances, CFD progress is now limited not by a lack of ideas but by the sheer software effort needed
to implement new ideas. To combat this malaise, Amrita seeks to provide incentives for third-parties to want
to work in situ, by offering the tools and management that are needed to push CFD forward, but which have
now outgrown a researcher’s capacity to craft them singlehandedly; at least in a reasonable time frame. This is
done in the hope that specialist components then filter back to improve the system. So that over time, without
compromising numerical accuracy, more and more applications become “5 minute jobs.” Thus Amrita acts as a
conduit between developers and end-users, neither of whom can survive without the other.

6“BCG codes” are constructed routine by routine, much as this document is constructed paragraph by paragraph. In fact the same “literate-
programming techniques” are used in both cases. Interestingly, a reluctant programmer will often utilize the convenience of BCG while at
the same time condemning the low-level Amrita constructs employed as system-overkill.

7Serial or parallel, 2D or 3D, LinearAdvectionEquation or RelativisticEulerEquations, makes no difference to the
way the work is scheduled in an Amrita script and so has no bearing on either the length or complexity of “user-code.” On the other hand,
“the system-code” needed to support this utopia can be extremely onerous to produce.

Closing comments
This abstract is too short to cover all the subtleties of the communication gaps within CFD. For example, a
computer scientist recognizing 8: folds from Occam; literate programming from Web, or Icon; dynamic linking
from Perl, or Python; binding generation from Swig; source archiving and navigation from Cvs; and so on, might
conclude that Amrita has nothing, intrinsically, new to offer. But [3] carefully articulates a similar conclusion,
together with reasons why the system is not proffered as a panacea. However, a case can be made for an Amrita-
style system, not because there is a lack of existing tools, but because the existing tools are too arcane for
casual programmers whose intellectual interests lie outside computer science. For instance, when a user issues a
solver command, Amr_sol does not limit itself to linking in a shared-object as would a typical Perl, or Python,
script. It goes on to perform a comprehensive series of checks to ensure that the patch-integrator is consistent with
the current state of the plugin engine. The need for such management, over and above raw language features,
lies at the root of Stroustrup’s assertion[4]. Moreover, the very individuals who benefit most from such safety
features, are the reluctant programmers who would have most difficulty articulating, by themselves, the reams of
Perl, or Python, needed for said checks. Thus, at one level, Amrita is striving to be a Mathematica-cum-Matlab
for CFD, albeit with an altruistic mission along the lines of Linux 9.

At another level, Amrita is striving to provide researchers with a software communication-protocol for prop-
agating CFD-expertise out to community, whether this involves the introduction of new algorithms, or devising
standardized tests which reveal weaknesses of current approaches. On this score, it is important to dispel two
popular misconceptions: (i) standardization limits intellectual freedom; (ii) simulations which takes days to run,
if not weeks, do not need automating. One, CFD is already subject to standardization, whether it be the AIAA
diktat on numerical accuracy, or the IEEE-754 rules for floating-point arithmetic; a society cannot survive without
some elements of standardization. Two, the longer an end-application takes to run, the more important it is that
“the code” is subjected to automated validation tests between runs so that “code rot” is detected before it wastes
large amounts of CPU time and results in false scientific conclusions. Moreover, if computing power continues to
improve at present rates: today’s cutting-edge, research problems will eventually become tomorrow’s homework
problems and so the sooner they are automated, the better.

To come full circle, the answer to – What You Can do For CFD – depends on your disposition. A first-
step, perhaps, would be to recognize that CFD has become a victim of its own success: there are far too many
algorithmic variations on a theme to know precisely when to use one method in preference to another – witness
the 100+ schemes that BasicCodeGenerator can produce for the ReactiveEulerEquations; the all
important “code” – which is getting more complex by the year – is rarely open to scrutiny, and so too many claims
have to be taken on trust for a discipline with pretensions of mathematical respectability. A second-step, at least
for reluctant programmers, would be to recognize that CFD’s problems can only be solved through software tools
and management that transcend specific physical applications, but since the tools are essentially labour saving
devices, it pays to learn to use them productively: there can be no CFD gain, without at least some software pain,
whatever route is chosen. In the case of Amrita, the talk will present a collection of numerical investigations:
pulsating detonations, detonation diffraction and reflection, which can be picked up by interested individuals to
springboard off, adding intellectual content on top of what the present author can achieve singlehandedly.

If you are unswayed by any of the preceding lines of argument in this abstract, and you are unwilling to
substantiate counter arguments using AmritaMailits 10, then it is probably fitting to end on a light note with an
old engineering joke – It takes a crank to start a revolution!

Acknowledgement
I am indebted to Hans Hornung whose enthusiasm for Amrita has been a constant source of inspiration. I would
also like to thank John Buckmaster and Mark Short for giving me the opportunity to get on my CFD soap-box,
although I accept full responsibility for any criticisms which come as a result.

References
[1] J. Bélanger, M Kaneshige and J. E. Shepherd. Detonation initiation by hypervelocity projectiles. In Shock

Waves, (eds. B.Sturtevant, J.E.Shepherd & H.G.Hornung), Proc. 20th ISSW, World Scientific Press, 1995.
[2] H. G. Hornung. Shock layer instability near the Newtonian limit of hypervelocity flows. Proc. 13th Aus-

tralasian Fluid Mech. Conf., eds. M. C. Thompson & K. Hourigan, Monash University, Dec. 1998, 111-118.
[3] J. J. Quirk. (i) Amrita : A Computational Facility (for CFD Modelling). 72 pages. (ii) Amr_sol : Design Prin-

ciples and Practice. 81 pages. In “29th Computational Fluid Dynamics,” von Karman Institute Lecture Series,
edited by H. Deconinck. ISSN0377-8312 1998. Available at: http://www.amrita-cfd.org/doc.

[4] B. Stroustrup. The C++ Programming Language (2nd ed. p.7). Addison-Wesley, 1991.

8If any of these tools are unfamiliar to you, a web-search will throw up as much information as you can handle.
9See: http://www.mathematica.com, http://www.mathworks.com and http://www.linux.org .

10This paper is itself generated by an AmritaMailit, with the specific aim of allowing flaws – found by critical third-parties – to be corrected.

