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Abstract

Laminar premixed ames often exhibit cellular patterns envolving ickering, i.e. periodic time

evolution. The model considered here, describes the pattern formation of ames stabilized by a

porous plug burner. We derive a Kuramoto-Sivashinsky-equation coupled to a heat equation for

the burner surface temperature. Even though the variations of the burner surface temperature are

small, they induce an observable e�ect. Namely, in a transition of the primary bifurcation from

stationary to oscillatory, which may explain experimental observations.

Introduction

In many instances the transition from laminar to turbulent combustion is associated with the develop-

ment of increasingly complex spatiotemporal patterns in the ame front. In premixed gaseous combus-

tion ame instability is often manifested in the formation of an array of cells along the ame front. Due

to the elevated temperature of the cells, they appear as bright troughs in the ame front pointing in the

direction of the fresh mixture. As time evolves the cells may pulsate.

Experimental observations of cellular ames date back to the 1950s [1]. In recent experiments in

[2] [3], cellular ames were established above a circular porous plug burner, and their dynamics were

described in detail. A common feature of all the reported patterns is the time-dependence of the

patterns. Some patterns exhibit periodic dynamics but many also show a very complex time evolution.

The spatial structure can be characterized as either ordered or disordered, where the ordered patterns

are often organized in the form of a single ring or several concentric rings of cells. In some patterns

a whole ring of cells rotates around a �xed point. In other patterns the cells icker, i.e. the cells

periodically expand and contract and also become brighter and dimmer.

The objective of this paper is to give a possible explanation for the observed rotations and pulsations

in the ame front.

The cellular instability mechanism for freely propagating premixed ames was described theoretically

by Sivashinsky [4], who considered a weakly nonlinear theory based on the di�usional thermal model [5]

resulting in a Kuramoto-Sivashinsky equation (KS) .

The stability of premixed ames stabilized by a porous plug burner was studied for one-dimensional

perturbations in [6] and for two-dimensional perturbations in [7]. It was shown that, if the ame

has a stand-o� distance within a range of several preheat lengths, the pulsating instability, which

for freely propagating ames exists only for high Lewis numbers, may be shifted toward lower Lewis

numbers more commonly encountered in gaseous mixtures. The Lewis number is de�ned as the ratio of

thermal to mass di�usivity. In [8], based on a linear stability analysis, a modi�ed Kuramoto-Sivashinsky

equation (MKS) was proposed to describe cellular porous plug burner ames. This MKS equation was

derived by systematic asymptotic methods in [9] where a logarithmically large stand-o� distance was

considered, allowing a balance between the stabilizing e�ects of the burner with the terms responsible

for the instability. Numerical solutions in 2D [9] of the MKS equation describing combustion in three

dimensions demonstrate that ickering or pulsating patterns may exist in the limit of large stand-o�

distances. However, patterns such as a rotating single cell are not described by the MKS. It seems

that in the experiments there is a greater tendency to rotation and ickering than in the numerics. The

experimental observations [2] [3], suggest that the primary bifurcation always is to a ickering or rotating

state even when the ame is located at large stand-o� distances from the burner. This is in contrast to

MKS results since the primary bifurcation to cellular ames as described by the MKS-equation is to a

stationary state.



Here we present a coupled system consisting of a heat equation coupled to a KS equation, where

the heat equation models small perturbations of the burner surface temperature about its equilibrium

value.

Relaxing the assumption of a constant surface temperature alters the primary bifurcation from

stationary to pulsating, thereby explaining the experimental observation that cellular ames icker or

rotate even at large stand-o� distances.

Model
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Figure 1: Burner geometry

Figure 1 shows the burner geometry considered here, which is related to the experimental con�gura-

tion employed in [2] where a premixed cellular ame is established above a circular porous plug burner.

A mixture of fuel and oxidizer emerges from a cooled porous plug and reacts in a thin laminar ame to

form the burnt products.

The main tasks of the burner are to uniformly deliver the fresh mixture and to stabilize the ame at

a �xed location. The gas velocity at the burner is below the propagation speed of a freely-propagating

adiabatic planar ame. Therefore, a ame that is ignited su�ciently far away from the burner, will

initially propagate toward the burner. As the ame approaches the burner, the heat losses to the burner

are growing and therefore the reaction temperature, and also the ame speed is lowered. Eventually the

ame is stabilized at a �xed stand-o� distance.

The burner consists of a porous plate which is cooled by an embedded cooling channel. We use a

one temperature model, i.e. we do not distinguish between the temperature of the solid matrix of the

porous plate, and the gas temperature in the pores of the matrix. This is valid as long as the heat

transfer between the gas and the porous matrix is su�ciently high. In contrast to the models [7] or

[6] where the burner surface temperature is assumed to be constant, we assume that the temperature

of the coolant is �xed. Therefore, small temperature variations along the burner surface may arise.

This assumption is consistent with the observation that the heat capacity of the burner, and therefore

its inertia, is typically large as stated in [7]. The e�ect of the large inertia is to restrict temperature

variations within the porous plug to a thin layer at the surface, and to allow for slow time evolution

only. By assuming a high heat capacity, and very small temperature variations of the burner surface

temperature, we �nd an observeable e�ect; the transition of the primary instability from stationary to

oscillatory.

In suitable nondimensional variables, the equations for the stand-o� distance � and the burner surface

temperature B are,

�
t
+r4�+ 2r2�+ (r�)2 +B = 0; (1)

aBt � br2B +B � c � = 0;

where a is proportional to the inverse of the Fourier-number, b is proportional to the heat conductivity

of the burner and c is a measure of the stand-o� distance of the ame. Here c = 0 corresponds to a

freely propagating ame which is not inuenced by the burner, and c > 0 stands for a ame which is

stabilized by heatlosses to the burner. For a burner with constant surface temperature, B = 0, equation



(1) reduces to a damped Kuramoto-Sivashinsky equation, �
t
+r4� + 2r2� + (r�)2 + c� = 0, which

exhibits cellular patterns for c < 1.
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Figure 2: Stability map

In �gure 2 the results from a linear stability analysis of (1) are shown.

For a < 1 we �nd the cellular instability, which is associated with a real eigenvalue which crosses the

imaginary axis as c is lowered below a critical value ccrit(b) > 1. I.e. the stand-o� distance of the ame

has to be su�ciently large.

For a > 1, and simultaneously b < bcrit and c > ccrit, we �nd an oscillatory instability, which is

associated with a pair of conjugate complex eigenvalues crossing the imaginary axis as either b or c cross

their critical values.

The nature of the new solution which originate from the instability is studied by numerical simula-

tions of equation (1).

Figure 3 shows a rotating two cell solution which was computed for a = :6, b = 0 and c = :96.

Figure 3: Rotating 2 cell solution

The grey scale annotates the depth � of the cells where white corresponds to small � and black to

large �. The pattern rotates counter-clock-wise. The shape and depth of the cells do not change in a

rotating frame of reference.

Other patterns such as rotating one, two and four cell solutions and also target patterns are computed.

Summary

Premixed ames stabilized by heat losses to a porous plug burner often exhibit pulsating cellular pat-

terns. We suggest that a possible origin for the pulsations is the large heat capacity of the burner.

In the present paper we present a model consisting of a Kuramoto-Sivashinsky equation describing the

evolution of the ame front coupled to a heat equation which describes the burner surface temperature.

It is assumed that the burner has a large inertia and a high transverse heat conductivity which applies

for typical burners.



With an increasing stand-o� distance from the burner, the stationary cellular instability is promoted.

The inertia, i.e. the heat capacity of the burner has no e�ect on the onset of the stationary cellular

instability. However, the transverse heat conductivity of the burner is promoting stationary cellular

patterns.

Pulsating cellular patterns are observed for small stand-o� distances and a large inertia of the burner.

The transverse heat conductivity of the burner retards the onset of the pulsating instability. As the

stand-o� distance of pulsating ames is increased, the frequency of the pulsations is lowered. For

su�ciently large stand-o� distances, bifurcation to pulsating cellular ames is through a in�nite period

bifurcation.

We speculate that accounting for the inertia of the burner in more sophisticated ame models that

include e�ects such as, large amplitude patterns, or strong thermal expansion will lead to qualitative

similar results.
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