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Abstract

We examine a simple model of an edge-
ame in non-premixed combustion in order to understand

why it is that such 
ames are often seen to oscillate. Examples include the edge of a near-limit 
ame

propagating over a liquid fuel, and the edge of a near-limit microgravity candle 
ame. We investigate

further an earlier hypothesis that these oscillations are a 2D manifestation of oscillations long known

to occur in 1D con�gurations because of Lewis number and heat loss e�ects close to extinction. We

explore the e�ects of a head wind on the edge, and the consequences of introducing a heat sink into

the neighborhood of the edge, obtaining results consistent with the hypothesis.

Introduction

It has been known for some years that when a near-limit 
ame spreads over a liquid pool of fuel, the edge

of the 
ame can oscillate relative to a frame moving with the mean speed [1]. Each period of oscillation

is characterized by long intervals of modest motion during which the edge gases radiate like those of a

di�usion 
ame, punctuated by bursts of rapid advance during which the edge gases radiate like those

in a de
agration [2]. Substantial resources have been brought to bear on this issue, both experimental

and numerical [3],[4].

It is also known that when a near-asphyxiated candle-
ame burns at zero gravity, the edge of the

(hemispherical) 
ame can oscillate violently prior to extinction. A description of experiments carried

out on board both the Space-shuttle and the Russian space station Mir can be found at the NASA

website http://microgravity.msfc.nasa.gov, and a brief report can also be found in [5].

Edge-
ame oscillations are also observed in the combustion of PMMA cylinders in a convective 
ux

of air [6]. A reduction of the oxygen level leads to extinction at the front stagnation point, and the twin

edges of the surviving 
ame retreat towards the rear of the cylinder where part of the 
ame is held in

the wake. But then they reverse direction and a number of oscillations occur in which the edges advance

and retreat.

Similar behavior is seen in a 
ame supported by injection of ethane through the porous surface of a

plate over which air is blown [7]. When conditions are close to blow-o�, the leading edge of the 
ame

oscillates violently.

In all of these con�gurations it is the edge that oscillates, not the di�usion 
ame that trails behind

the edge; and the oscillations only occur under near-limit conditions. Moreover, the fuel Lewis number

in each case is greater than 1 (� 1:4 for ethane (P.Ronney, private communication), � 1:6 for PMMA

vapors (J.Goldmeer, private communication)).

Hypothesis

It is useful to brie
y summarize certain one-dimensional results. Chemical reactor theory [8] can predict

the kind of response shown in Fig.1 for a system with heat losses and large Lewis number(s). Steady

stable solutions characterized by points on the upper branch change to oscillating solutions when the

Input is reduced to values below that de�ned by the N(eutral)S(stability)P(oint), a point not far from

the S(tatic)Q(uenching)P(oint). In a combustion context, oscillating instabilities were �rst reported

for di�usion 
ames in a theoretical study in [9], and here also the the instabilities are associated with

near-extinction conditions, large Lewis numbers, and heat losses. And de
agrations will oscillate if the
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Figure 1: Response diagram for a reactive system. NSP = neutral stability point; SQP = static

quenching point.

Lewis number is large enough, oscillations that are exacerbated when heat losses are present, whether

global or to a surface [10], [11].

In all of these situations, reaction weakening by approach to a quenching or blow-o� point, together

with heat losses, is a common ingredient. The relevance of this observation is that the edge of a


ame with an edge will be weakened by the edge curvature if the fuel Lewis number is greater than

1: Increased conductive heat losses from the edge arising from the curvature are not compensated by

increased 
uxes of fuel to the edge. Consequently, we hypothesize, following [12], that all the edge-


ame oscillations described in the Introduction are a consequence of the heat loss/large Lewis number

mechanism. Evidence presented in [12] is here expanded.

The Model

Our model is designed to capture only the most basic elements of a di�usion 
ame with an edge, within

a framework that is consistent with the experimental con�gurations. We con�ne the 
ame within two

boundaries, a fuel-supply boundary at y = 1=2 and an oxygen-supply boundary at y = �1=2. The

former plays the role of the /pool-surface/wick/cylinder-surface/plate-surface/, the latter plays the role

of the surrounding oxygen-laden atmosphere. Both X and Y , the reactant mass fractions, are speci�ed

at these boundaries. On the upper boundary X is zero everywhere, on the lower boundary Y is zero

everywhere. We introduce an anchor point at x = 0 by setting Y � 0 on the half-line x < 0 at the

upper boundary, but otherwise Y = Yo there. On the lower boundary, X = Xo everywhere. The point

x = 0; y = 1=2 corresponds to the base of the wick, the transition point between fuel-laden wick and the

solid wax (experiment 2); to the stagnation point of experiment 3; and to the dividing point between

the impermeable portion of the plate and the porous portion in the fourth experiment. The connection

with the 
ame-spread con�guration is less sharp, but ahead of the edge there is little evaporation, for

the 
ame provides the heat for this. Both boundaries act as heat sinks, and we specify the temperature

at each of them.

We adopt a constant density model, partly to avoid what we believe are unnecessary 
uid-mechanical

complications, and we seek unsteady two-dimensional solutions governed by the system of equations:
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This di�ers from that discussed in [12] by the addition of the convective (U) term. There are no

convective 
uxes between the 
ame and the boundaries for this model, but there is no reason to believe

that the convective 
uxes in the physical con�gurations play a role that is fundamentally di�erent from

that played by the di�usive 
uxes, so that their omission should be of little qualitative consequence.



0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

T

Figure 2: T vs. t at a �xed point.
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Figure 3: Reaction rate contours during retreat (a) and advance (b).

The equations are solved on the domain [�5; 5] � [�1=2; 1=2] with the supply conditions that we

have described above applied at the boundaries y = �1=2. At x = �5 we assume that the solution is

locally one-dimensional and apply Dirichlet data de�ned by the two appropriate 1D solutions. At the

left boundary, this is the frozen solution. At the right boundary it is a strong 
ame solution, determined

numerically but di�ering only a little from the asymptotic Burke-Schumann solution. For some of the

calculations we have introduced a 'cold rectangle' into the interior of the domain, a rectangle of mesh

points at which the temperature is set to the boundary value. This simulates the insertion of a cold

probe into the combustion �eld.

Results

We would expect, if the core hypothesis ([12]) is correct, that a convective 
ow in the x�direction

(U > 0) will encourage the oscillation. The convective cooling in the absence of convectively-enhanced

fuel 
ux (there is no fuel-supply in x < 0) will weaken the edge. Indeed, with the choices LeX = 1,

LeY = 1:7, we �nd that there are values of the Damk�ohler number D for which steady stable solutions

are obtained when U = 0, but oscillating solutions are generated when U = 1. On the other hand, if

LeX is �xed at 1 but LeY is reduced to 1.5, an increase in U merely leads to blow-o� without oscillation

for any value of D, consistent with the role envisaged for the Lewis number. Reversal of the 
ow (U < 0)

baths the edge in hot reactants, strengthening it. We expect this to suppress the instability, and that is

what we �nd.

Turning to the heat-sink (cold rectangle), we would expect that if this is placed in the vicinity of

the edge, an otherwise stable edge could be destabilized, and this is what we �nd. The details, both of

the e�ects of U and of the cold rectangle, will be published elsewhere, but here we describe some of the

characteristics of the unsteady oscillating 
ame.

Figure 2 shows temperature variations at a �xed point, typical of those for an oscillating edge. For

much of each period the point is ahead of the edge and so the temperature is low, but during a brief



interval the edge passes through the point and then retreats, creating a sharp temperature spike.

Figure 3 shows reaction rate contours typical of those for a retreating edge (a) and an advancing edge

(b). The retreating edge is nothing but a rounded di�usion 
ame; the advancing edge is a tribrachial


ame, one with strong premixed branches. Thus Figs.3 are consistent with the observations made in

[2], noted in the Introduction.

A �nal comment. According to the hypothesis, a large increase in the Lewis numbers should have

a marked e�ect on the edge behavior. Indeed it is known from one-dimensional 
ame studies and

associated experiments [13] that large Lewis numbers lead to high frequencies. It is therefore relevant

to note that when nitrogen is replaced by helium in pool 
ame-spread experiments, the frequency of

edge pulsations increases dramatically [14].
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