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Abstract

The chemical-gasdynamic mechanisms behind the instability and failure of a one-dimensional

pulsating detonation wave driven by a three-step chain-branching reaction are revealed by direct

numerical simulation.

Introduction

Depending on the initial pressure, projectile velocity and mixture ratio of chemical reactant to diluent,

two di�erent regimes of pulsating detonation instability have been observed to occur when spherical

objects are �red into a reactive atmosphere (Lehr 1972, McVey & Toong 1971, Alpert & Toong 1972,

Kaneshige & Shepherd 1996). The �rst involves regular periodic oscillations of the 
ow �eld, while

the second involves less regular but signi�cantly larger amplitude oscillations. Alpert & Toong (1972)

refer to the former as the regular regime and the latter as the large disturbance regime. In both cases,

however, the characteristic hydrodynamic mechanisms of the pulsating detonation instability are still

poorly understood, despite the number of semi-qualitative theories that have been put forward.

In the following, the mechanisms for the regular, irregular and failure modes of pulsating detonation

wave instability are investigated by very high resolution direct numerical simulation. The chemistry

is modelled by a three-step chain-branching reaction, having the distinct advantage over the standard

one-step Arrhenius model of possessing a well-de�ned detonability limit (Short & Quirk 1997). The

mechanisms driving both the instability and failure of the detonation wave are revealed by examining

selected snap-shot pro�les of the thermodynamic and chemical structure behind the detonation shock

during the unsteady evolution. The use of adaptive mesh re�nement allows an e�ective resolution

equivalent to 320 points in the standard steady-wave half-reaction length. We �nd that the mechanisms

for both the regular regime and large amplitude regime are found to di�er from those proposed by

McVey & Toong (1971) and Alpert & Toong (1972).

Model

The pulsating detonation instability is modelled by the one-dimensional, non-dimensional reactive Euler

equations (Short & Quirk 1997)
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where the variables �; u; p and e are the density, velocity, pressure and speci�c internal energy respec-

tively. A polytropic equation of state and an ideal thermal equation of state are assumed, where

e =
p

(
 � 1)�
� q; T = p=�; (2)

q represents the local chemical heat energy and T represents the temperature. The scales for the density,

pressure, temperature and velocity are the steady-wave post-shock density, pressure, temperature and

sound speed respectively.

The chemical reaction is modelled by the three-step chain-branching reaction
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Chain-termination : Y ! P; kC = 1;

(3)
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Figure 1: (a) Points in the regular detonation shock pressure cycle at which the snap-shot pro�les of

the variation in (b) pressure are taken during one cycle of the regular pulsating instability.

for fuel F; chain-radical Y and product P: The chain-initiation, chain-branching and chain-termination

rate constants are given by kI ; kB and kC respectively. The inverse activation energy for the initiation

reaction is �I and for the chain-branching reaction �B : The chain-initiation and chain-branching cross-

over temperatures are given by TI and TB respectively and are the values at which the chain-initiation

and chain-branching rates are equal to the chain-termination rate. Consumption equations for fuel and

radical are
Df

Dt
= �rI � rB ;

Dy
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and f and y represent mass fractions of fuel and radical. The chemical energy q is de�ned as

q = Q(1� f)� (Q+R)y; (6)

where Q > 0 represents the total chemical energy available in the unreacted mixture and R represents

the amount of endothermic energy absorbed by the initiation and chain-branching reactions in breaking

down the reactant F into the energetic radical Y: In order to mimic the typical reaction dynamics of

chain-branching chemistry, in addition we assume that

TI > 1; TB < 1; �I � �B � 1; R = 0: (7)
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Figure 2: Snap-shot pro�les of the mechanisms underlying the large pressure modefound in the deto-

nation shock pressure trace for TB = 0:86 for (b) pressure. Labels 1-7 in �gure 2(a) show the points in

the irregular detonation shock pressure cycle at which the snap-shots are taken.

For the calculations shown below, Q = 3; �I = 1=20; �B = 1=8; TI = 3; 
 = 1:2 and the detonation

overdrive d = 1:2:

Mechanisms of regular, irregular and failure modes

The chemico-gasdynamic mechanisms driving the regular mode of pulsating instability, observed here for

a chain-branching cross-over temperature TB = 0:82; are revealed in �gure 1. The instability is driven

by periodic low-frequency, �nite-amplitude compression and expansion waves in the chain-branching

induction zone between the main reaction layer and the detonation shock.

The chemico-gasdynamic mechanisms driving the irregular mode of pulsating instability, observed

here for a chain-branching cross-over temperature TB = 0:86; are revealed in �gure 2. Unlike the regular

mode of pulsating instability, the irregular mode �rst involves a decoupling between the shock and main

reaction layer. Subsequently, the main reaction layer accelerates, drives a compression wave ahead of it,

and undergoes a transition to detonation. This internal detonation wave overtakes the lead detonation

shock, generating a new high-pressure detonation, which rapidly decays and the instability cycle is

repeated.

Figure 3 shows the mechanisms underlying the scenario of detonation quenching, or failure, for

TB = 0:89: Here, the shock temperature is observed to drop to the cross-over temperature for the
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Figure 3: Snap-shot pro�les of the 
ame receding from the detonation front during detonation failure

for TB = 0:89 for (b) temperature. The labels in �gure 3(a) show the points in the detonation shock

pressure cycle at which the snap-shots are taken. The dashed line in �gure 3(b) indicates the value of

the chain-branching cross-over temperature TB = 0:89:

chain-branching reaction, causing the main reaction layer to decouple and retreat inde�nitely from the

detonation shock. The criteria for failure is: the shock temperature should fall to the chain-branching

cross-over temperature.
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