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Abstract

We examine the multi-dimensional linear stability of an overdriven detonation wave in the limit

of a small, shock-temperature-scaled, heat release � and with a ratio of speci�c heats 
 such that

(
� 1) = O(1): Under these assumptions, the steady structure can be evaluated explicitly, allowing

us to derive a wholly analytical representation of the dispersion relation governing the detonation

stability behaviour. The dispersion relation predicts that for �nite detonation overdrives and � �

1; the detonation is always stable to two-dimensional disturbances. For large overdrives f; the

boundaries between regimes of stability or instability are found to depend on a choice of distinguished

limits between � and f:

Introduction

The problem of detonation stability and the formation of detonation cells has enjoyed much attention

recently. Direct numerical simulations (Bourlioux & Majda 1992; Quirk 1994; Williams, Bauwens &

Oran 1996; Quirk & Short 1998) reveal a range of cell sizes and regularity as the four fundamental det-

onation parameters, the heat release, activation energy, ratio of speci�c heats and detonation overdrive,

are varied.

Recent theoretical attempts at explaining the mechanism underlying the cell formation include Buck-

master & Ludford (1986), Buckmaster (1989), Yao & Stewart (1996), Short & Stewart (1997) and Short

(1997). These assume a large activation energy coupled with a pressure change through the main re-

action layer of the order of the Von-Neumann shock pressure. In this regime, these studies reveal an

intricate coupling between the shock state and the response of the main reaction layer in driving the

cell formation. Other theoretical studies include that by Clavin, He & Williams (1997) who studied the

multi-dimensional stability of overdriven waves in the limit of large detonation Mach numbers.

Having established the mechanisms behind detonation instability for large activation energies in

a one-step Arrhenius reaction model, we now progress to the study of problems with di�erent limits

of equally important practical interest, namely those of a moderate activation energy and a low heat

release measured on scales associated with the steady post-shock detonation temperature. The latter

limit could, for example, account for the large amounts of inert diluent that are typically added to the

chemical mixtures when conducting experiments on cellular detonation instabilities (Strehlow 1970),

but as in Clavin, He & Williams (1997), also covers situations of large detonation overdrive. However,

unlike Clavin, He & Williams (1997) who predict unconditional detonation instability, the limits we

investigate uncovers the range of parameters where the neutral stability boundary occurs.

Model

We assume an ideal gas which undergoes a unimolecular, �rst-order, irreversible Arrhenius reaction with

constant mole fraction and ratio of speci�c heats.

Parameter choices

The scaled heat release � and activation energy � are de�ned by

� = 
 eQ=eT �

s
; � = 
 eE= eT �

s
;



where eQ and eE are the dimensional heat release and activation energy respectively for the reaction

mixture and eT �

s
is the immediate post-shock temperature in the steady detonation wave. The ratio of

speci�c heats is denoted by 
; while the detonation overdrive

f = (D�=D�

CJ
)2;

where D� is the steady detonation Mach number and D�

CJ
the steady Chapman-Jouguet detonation

velocity.

We study the multi-dimensional stability of detonations in the parameter range

� � 1; � = O(1); (
 � 1) = O(1):

Our analysis thus applies to situations where eQ� eT �

s
; and since eT �

s
is a function of the detonation Mach

number D�; does not restrict us to small values of eQ: We also assume that the detonation overdrive

f > 1; to avoid the complex transonic 
ow problem that occurs when f = 1; � � 1 andM�

s
= 1+O(

p
�);

where M�

s
is the steady post-shock 
ow Mach number.

For the purpose of the perturbation analysis we de�ne the product of (
 � 1) and � as

(
 � 1)� = �; �� 1:

Steady detonation wave structure

In the above parameter range, and in the shock-attached co-ordinate frame X; the pressure variation p
through the steady detonation wave can be evaluated as,

p� = p�
b
� ��(Y �

0 � 1);

where p�
b
is the constant pressure at the burnt state (X !1); � is a constant and Y �

0 is the leading-order

reactant mass fraction variation through the detonation wave. This has the straightforward form,

Y �

0 = 1� (1=2)
X
:

Expressions for the velocity and density variations can be derived similarly.

Normal-mode stability analysis

A normal-mode linear stability analysis is possible by expanding pressure and the perturbation to the

shock front, h; in the form

p = p�(x) + p0(x)e�t+iky ; h = h0e�t+iky ;

where Re(�) represents the disturbance growth rate, Im(�) the disturbance frequency and k the distur-

bance wavenumber. The shock-attached coordinate is x; while the transverse coordinate is y: Similar
expansions can be written down for the other variables. The perturbation eigenfunctions (p0(x); etc) sat-
isfy perturbed Rankine-Hugoniot relations at the shock front (x = 0) and a standard acoustic radiating

condition at the equilibrium point x!1:

Dispersion relation

Since the steady detonation structure is known analytically, it transpires that by expanding the pertur-

bation eigenfunctions in the form p0 � p00 + �p01; a dispersion relation governing the multi-dimensional

stability of detonation can be derived in the truncated form,

F0(�; a
�

i
(�)) + �F1(�; a

�

i
(�)) = 0;

allowing an analytical representation for � to be determined in the truncated form,

� � �0 + ��1 + �2�2:

An analysis of form of � allows us to determine the ranges of parameters for which the detonation is

either stable or unstable. We have identi�ed three signi�cant regimes as explained below.
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Figure 1: Re(�2) versus k for 
 = 1:4 and (�D� 2)�1 = 0 with (1) � = 4:5; (2) � = 4:0; (3) � = 3:5; (4) � = 3:0;

(5) � = 2:5; (6) � = 2:0; (7) � = 1:5; (8) � = 1:0 and (9) � = 0:5:
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Figure 2: The neutral stability boundary in (a) the Q{E plane for 
 = 1:4 and f = 5; and (b) the f{E plane

for 
 = 1:4 and Q = 1: The regions to the right of the curves are unstable.

Stability Results

Before proceeding, we de�ne the traditional heat release and activation energy scalings

Q = 
 eQ=eT �

0 ; E = 
 eE=eT �

0 ;

to present our results, where T �

0 is the pre-shock reactant temperature.

Unconditional detonation stability - f = O(1); Q� 1:

In the parameter range of order one overdrives, and a small heat release Q = O(�) � 1; our dispersion
relation predicts unconditional stability of the detonation wave to multi-dimensional disturbances.

Unconditional detonation instability - f � 1; Q� 1:

In the parameter range de�ned by large overdrives, f � 1; and a large heat releaseQ� 1; our dispersion
relation predicts unconditional instability of the detonation wave to multi-dimensional disturbances. For

each value of � and 
; we �nd a single unstable mode consisting of a �nite range of unstable wavenumbers.
An example is shown in �gure 1.

Location of neutral stability boundaries - f � 1; Q = O(1):

In the parameter range de�ned by large overdrives, f � 1; but with an order one heat release Q = O(1);
our dispersion relation predicts the presence of a neutral stability boundary de�ned by a further relation

between the four parameters Q; 
; f and E: Typical neutral stability boundaries in Q-E space and f -E
space are shown in �gure 2. Their behaviour are qualitatively similar to those calculated numerically.

For example, for �xed E; f and 
; an increase in Q will render the detonation unstable. On the other

hand, for �xed E; Q and 
; an increase in f generally will render the detonation stable. In addition to

quantitative evaluation, the explicit analytical dispersion relation we have derived provides a mechanism

for understanding the reasons behind detonation instability in the above parameter ranges.
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