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Abstract

We present numerical simulation of the transient behaviour of freely propagating spherical 
ame

structures in three dimensions. The parameters correspond to a lean H2{air system with low Lewis

number. The governing partial di�erential equations are solved by means of a parallelized Fourier{

pseudospectral code. The algorithm is applied to compute the evolution of thermo{di�usive 
ames,

whereby the in
uence of the Lewis number, the initial 
ame radius and the radiation are investigated.

The results exhibit di�erent events of 
ame balls as found in experimental studies under microgravity

conditions, i.e. the splitting due to cellular instabilities and extinction.

Introduction

Combustion of mixtures at near extinction conditions have a wide range of applications, e.g. for the

improvement of energy conversion engines or �re safety. For many reactive systems there is little

knowledge about the behaviour and stability of very lean 
ames.

Microgravity (�g) conditions provide a suitable environment to study the interaction of scalar trans-

port, chemical reaction and radiation in a reliable way, because the signi�cance of earth-generated

buoyancy is excluded. Many �g-experiments are being carried out to investigate the extinction and


ammability limits of premixed lean gas mixtures at small Lewis numbers, e.g. in the space shut-

tle [7]. These studies show di�erent scenarios: local extinction, cellular instabilities, and stationary


ame structures, i.e. 
ame balls.

The aim of the present study is the investigation of the instationary behaviour of 
ame balls in three

space dimensions by means of direct numerical simulation of the governing partial di�erential equations.

The code was implemented and optimized on a massively parallel computer (IBM RS/6000 SP with 256

processors, Rechenzentrum Karlsruhe) so that large scale problems using high resolutions can be solved.

Particular interest is dedicted to the in
uence of the initial radius and the radiative heat loss on the

evolution of spherical freely propagating 
ame structures.

Numerical Method

As governing model we employ the thermo-di�usive equations in their dimensionless form with single-

step Arrhenius kinetics and a Stefan{Boltzmann type radiation term
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where T = ( �T �
�Tu)=( �Tb � �Tu) denotes the dimensionless reduced temperature and Y = �Y = �Yu the

nondimensionalized species concentration. The overbar speci�es dimensional quantities, the indices

u and b refer to the unburnt and burnt state, respectively, without heat loss. The space and time

dimensions are nondimensionalized with the 
ame thickness and the 
ame velocity. Further parameters

are the Lewis number Le, the Zeldovich number �, the temperature ratio � = ( �Tb � �Tu)= �Tb, and a

radiation constant c, depending on the Stefan{Boltzmann constant and the Planck length. The above

model equations exclude convection and assume the density and other thermodynamic properties of the

gas to be constant. This is justi�ed as discussed in [6]. The involved physical mechanisms are shown in

�g. 1, schematically.
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Figure 1: Schematic view of a three-dimensional 
ame ball

The employed values of the parameters and the initial conditions are given below.

For the numerical solution of the system (1){(4) we �rst discretize the equations in time using exact

time integration of the linear terms and a second order Adams{Bashforth extrapolation for the non-

linear terms. The spatial discretization is done by a classical Fourier-pseudospectral approach [5]. The

equations are transformed into Fourier space using a parallel version of the Temperton Fast Fourier

Transform (FFT). The non-linear reaction and radiation terms are calculated by collocation in physical

space.

The main computational cost is caused by multidimensional FFT's between physical and coe�cient

space. To achieve high resolution without increasing computing time, the code was implemented on an

IBM RS/6000 SP using the message passing interface (MPI) [3].

Results and Discussion

Because 
ame balls live far from any boundary, periodic boundary conditions can be employed. As

initial condition we take the asymptotic solution of the three-dimensional 
ame balls proportional to

1=r [4] with an additional exponential smoothing for large radii to remove even the tiniest discontinuity

at the boundaries. In all the following computations, the thermodynamic parameters were � = 10,

� = 0:64, Tb = 830K, Tu = 300K, and Le = 0:3, corresponding to a 6:5% H2{air 
ame. The sidelength

of the computational box was L = 80, and the time step was �t = 5 � 10�4. The presented simulations

were computed on 64 processors with a spatial resolution of 2563. This discretization was checked to be

su�cient to resolve the narrow chemical reaction zone.

To study the in
uence of the di�erent parameters, we carried out several simulations varying c and

r0, being the initial 
ame radius. The evolution of the 
ame ball is quanti�ed by the integral reaction

rate R(t) =
R
V
!dV .

Figure 2 summarizes the evolution of R for parameter sets together with typical two-dimensional

cuts through the reaction rate corresponding to the indicated points in the diagram. Con�guration (a)

with r0 = 2; c = 0:1 exhibits a gradual splitting of the 
ame into more and more cells (cf. Fig. 2A). The

evolution of a 
ame kernel with radius r0 = 4, which is not shown here, also starts with separating into

cells, but later the 
ame is extinguished because of increasing heat loss with growing radius. Larger

initial radii, e.g. r0 = 6 in case (b), lead to direct extinction without splitting of the 
ame due to

dominating radiation e�ects (Fig. 2B).

A weaker radiation of c = 0:05 in (c) causes less cooling of the 
ame ball centre. In this case, even for

the large initial radius of r0 = 5, the 
ame front shows local quenching and instabilities, but at t = 5 the

front is more wrinkled and not yet separated into isolated cells (Fig. 2C). Later, at t = 10 (Fig. 2C') the


ame ball with c = 0:05 has divided up into more cells than in the simulations with c = 0:1. Increasing

the radiation (d) results in a fast cooling of the 
ame core even for small radii of e.g. r0 = 2 and thus
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Figure 2: Left: Evolution of the integral reaction rate R for di�erent simulations (a),(b),(c), and

(d); Right: Zoom of horizontal cuts of the reaction rate at the points A, B, C and at a later time,

respectively.

the 
ame ball with c = 0:2 shows extinction at early times. Hence, the volumetric heat loss impact

implies that systems with high radiation can only exist for small diameters. This qualitatively agrees

with the experiments where the in
uence of radiation can be studied e.g. by adding CF3Br to the fuel

mixture [7] and with the asymptotic analysis of [4].

The patterns created during the splitting are generic with the orientation depending on the pertur-

bation of the 
ame, which, for example, can be introduced by local stretching of the initial condition.

Additionally, the spatial discretization also introduces a slight perturbation, which naturally determines

the pattern's orientation in the absence of other disturbances, i.e. for the spherical case.

As an example for an initially stretched 
ame, we used a rotated ellipsoid with axis' ratios of

rA : rB : rC = 1 : 1 : 2. The radiation constant was c = 0:1. The evolution of the temperature isosurface

(T = 0:5) and the reaction rate isosurface (! = 1) are depicted in Fig. 3 at times 0, 5, and 10. To

illustrate the orientation of the ellipsoid, the planes perpendicular to the axes of the initial ellipsoid are

superimposed, transparently.

Analogous to two-dimensional simulations [2], the structure �rst breaks up in the directions with the

highest perturbation so that it devides into two cells along the longer axis (see Fig. 3, centre). The two

cells then degenerate to spherical structures without preferred direction. Hence, we obtain a subsequent

splitting into a more complex pattern, now in
uenced by the spatial discretization. This can be assessed

by comparing with an analogous computation with a non{rotated ellipsoid. Comparing the evolution of

the total reaction rates for both cases proves that the physical perturbation triggers the splitting until



the separation into two cells has �nished [1].
                                    

                                    

Figure 3: Flame structure with Le = 0:3, c = 0:1 and rotated elliptic initial condition with rA = 1:5,

rB = 1:5, rC = 3:0. The pictures show the isosurfaces of the zoomed �elds with box length 40 of the

temperature at T = 0:5 (top) and the reaction rate at ! = 1 (bottom) for t = 0, 5, and 10.
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