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Introduction

An ignition of a single reacting heterogeneously metal particle in a surrounding gas medium is usually
described as transition from kinetically controlled regime of reaction to diffusion controlled one [1]. As
a result of nonlinear on temperature Arrhenius reaction rate, diffusion of oxidizer from surrounding gas
medium to the reacting particle and the thermal exchange between the surrounding and the particle,
a qualitative description of the particle temperature dynamics by bistable potential, V (Tparticle), is
extensively used [2]. Each minimum in this potential is due to the reaction which may be either kinetically
controlled or diffusion controlled. Investigating the temperature dynamics at low temperatures, when the
reaction is kinetically controlled (k/β � 1), potential can be reduced to the onestable potential which
is characterized by having two equilibrium points, one stable and one unstable (for subcritical state).
Ignition takes place when the potential loses its stable state at a critical temperature of surrounding
(critical state). Unstable value of the temperature of the particle at that critical condition is well known
as a critical one.

The situation described above could be fully complete if the temperature of surrounding medium
periodically changes with time. The temperature dynamics of the particle becomes a complex function.
Close to the critical temperature of particle the temperature dynamics is sensitive to the temperature
perturbation in the surrounding. In reality, even for the system in the supercritical state (reduced
potential has no equilibrium points) external fluctuations complicate dynamics of ignition and lead to a
noticeable variation of the ignition delay time.

The main objective of this article is to analyse the dynamics of the ignition process of the particle
in dynamic temperature conditions by moments of time when the particle temperature passes through
a fixed value. The response of temperature dynamics to an imposed external periodic perturbation is
defined as strong when it can temporarily and some times periodically decrease the temperature of particle
during ignition.

Model and two representations of dynamics

Periodic external temperature conditions for a particle are set as a harmonic function, T∞ = T∞ +
A sin (ωt+ φ0), where T∞ is the time average value, A is the amplitude, ω denotes the frequency and
φ0 is the initial phase. Consider a Newtonian thermal exchange at low-frequency change of temperature
in the surrounding, when thermal waves in the particle are not generated, the temperature dynamics of
that particle will be described by the conservation energy equation written in dimensionless form here as

dθ

dτ
= ψce

θ − θ + λ+ ε sin (Ωτ + φ0) (1)
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with initial condition θ (τ = 0) = θ0.
Here θ is the dimensionless temperature of the particle, ε is the dimensionless amplitude of the sur-

rounding temperature perturbation. λ denotes dimensionless difference between the critical temperature
of surrounding at static regime, ε = 0, and average value of the surrounding temperature at the dynamic
regime, ε �= 0. ψc is the Semenov parameter which has the critical value, e−1, corresponding to the static
regime of reaction. Time and frequency are represented in the thermal relaxation time scale: τ = t/τr;
Ω = ωτr. Since the mean magnitude of the perturbation may have different values then there are three
dynamical regimes of ignition in reality. Namely: subcritical, λ < 0, critical, λ = 0, and supercritical,
λ > 0.

Figure 1. (a) Own representation of dynamics and (b) parametrical representation of dynamics for ε = 4.5
(1), ε = 0.5 (2). ZI is the region of strong response to perturbation. ZII is the region of weak response. The

parameters are: θ0 = −7, λ = 1.5, Ω = 1.2, φ0 = −π/2. θl and θh are the temperature limits for strong

response.

Examples of the supercritical temperature dynamics of the particle are shown in Fig. 1(a) for two
values of amplitude perturbation, ε. As it can be seen from this figure, response of the particle temperature
to the external perturbation is strong within some temperature interval, θl < θ < θh, only for the large
amplitude case. The limiting values of this interval, θl, θh, depend on the parameters of the perturbation,
ε, λ, and may be estimated analytically. Equating the right hand side of Eq. (1) with zero and minimizing
it on the phase, we can found the next relation

ε = ψce
θ − θ + λ (2)

which is shown in Fig. 1(b). This curve divides θ − ε plane into two regions: a region of strong response
to the external perturbation, ZI , and a region of weak response, ZII . The minimum of this function is
located at the point (θm, εm) = (1, λ). It can be easily verified that Eq. (2) has two solutions, θl and
θh, when the amplitude of the external perturbation is larger than the value of the minimum of this
function, ε > εm, one solution, θl = θh = θm, when ε = εm, and no solutions when ε < εm. Using the
parametrical dependency calculated by Eq. (2) and represented in Fig. 1(b), the temperature dynamics
can be described qualitatively by a point moving from the coordinates (θ0, ε) to (∞, ε). If during
ignition the temperature of the particle passes through region ZI , dθ/dτ changes its sign and therefore
temperature dynamics is similar to curve 1 between θl and θh in Fig. 1(a). After some time, when the
temperature of the particle becomes equal to θh, the chemical reaction controls the ignition process and
the periodic temperature perturbation plays minor role. For ε < εm, the temperature response to external
perturbation is not strong, and the particle temperature increases continuously with time. This case is
well known in literature as a small amplitude limit (see, for example, Ref. [4] and references therein).

For the critical regime of ignition (λ = 0), a strong response is realized for all values of the amplitude
of the external perturbation. Applying perturbation with negligible small amplitude, we can estimate
the temperature interval where strong response occurrs, θh − θl = 2

√
2ε.



Phase diagram for the passage time

The approach described in the previous section does not show all the information about the time history
of the particle temperature. It gives only the conditions and the temperature interval in which the
response of temperature dynamics to the external perturbation is strong. It is easy to understand that
the evolution of the particle temperature depends not only on the amplitude and the time average value of
the perturbation, ε, λ, but also depends on the phase parameters, Ω and φ0. To investigate the dynamics
at different frequencies, we will be interested in moments of time, when the temperature of the particle
passes the value θi, which can lie within ZI or ZII region. As it follows from Fig. 1(a), for the large
amplitude case, ε > εm the particle temperature crosses the value θI

i at several moments of time: τ1
i , τ2

i ,
τ3
i . However, the temperature of the particle reaches the temperature θII

i only once. Moreover, at the
moment τ2

i we have dθ/dτ < 0, but for odd values (τ1
i and τ3

i ) we can see that dθ/dτ > 0. The values
of these moments and the number of intersections are determined by the frequency of the perturbation.
For small amplitudes, ε < εm one point of intersection of the particle temperature with θI

i occurs as well
as with θII

i .
Let F (τ,Ω; θ, θ0, λ, ε, φ0) ≡ 0 be the implicit solution of Eq. (1) written at the moment τ for the

particle temperature θ. Fixing the value of θ, θ = θi, all the values of τi (τ1
i , τ2

i , τ3
i ...) that satisfy

the implicit solution of Eq. (1) can be found numerically. Assuming that F (..; ...) is a continuously
differentiable function at each point, then, in accordance with the implicit function theorem [5], the
derivative of τi(Ω) with respect to the frequency is

dτi
dΩ

≡ dθi/dΩ
dθi/dτi

= −∂F/∂Ω
∂F/∂τi

(3)

where the implicit solution, F (..; ...) is taken in the point τi, θi. As it follows from the last equation,
dτi/dΩ is equal to infinity when dθi/dτi (or ∂F/∂τi) = 0. This condition is only possible for (θi, ε) ∈ ZI

and (θi, ε) satisfying Eq. (2).
For (θi, ε) ∈ ZI there are two solutions for the phase expressed as

(Ωτi)
+
n + φ0 = + arcsin

(
−(ψce

θi − θi + λ)/ε
)

+ 2πn,
(Ωτi)

−
n + φ0 = − arcsin

(
−(ψce

θi − θi + λ)/ε
)

+ 2π(n+ 1/2).

}
(4)

Substituting θi and ε that satisfy Eq. (2) into Eqs. (4) yields

(Ωτi)n + φ0 =
3π
2

+ 2πn, (5)

where Ωτi must be greater than zero and n = 0, 1, 2, ...
For (θi, ε) ∈ ZII there are no frequencies possible at which the derivative dτi/dΩ = ∞. In fact, the

phase in Eq. (5) is the bifurcation point for the phases described by Eqs. (4). Examples of the solution,
τi(Ω), of F (τi,Ω; ...) ≡ 0 for these three different cases are shown in Fig. 2(a), see next page. It is easy
to see from this figure that the solution, τi, strongly depends on the frequency of the perturbation.

The results obtained above are in good agreement with the experimental data represented in Ref.
[3]. As it is shown in Fig. 2(b) by solid squares, discontinuity of the experimental dependency of τi
against Ω are observed. The experimental parameters taken is used for simulations and have the values:
λ = 1.5, ε = 11.99 and θi = −0.52. It is easy to check, (θi, ε) corresponds to region where the response
to perturbation is strong, (θi, ε) ∈ ZI , which results in the discontinuity of the experimental dependency
of the ignition delay time on frequency. According to the numerical simulations and Eqs. (4), strong
response leads to the multiplicity of τi(Ω) in frequency bands, width of which greatly depends on the
kinetic constants of the chemical reaction and inertia properties of the particle.

Actually, casual temperature fluctuations of the surrounding medium exist during experiments and
make a contribution to the ignition process. They both change the frequency band width of the multi-
plicity when (θi, ε) ∈ ZI and result in an induction of the multiplicity of the ignition delay time when
(θi, ε) lies in the region ZII near the curve given by Eq. (2). In addition, using an analytical approximate
solution of Eq. (1) written for the low temperature stage of ignition, θ < 0 (when reaction rate is small
but not negligible), the envelope functions for solution and the experimental data are obtained. For the
more simple case – inertia heating, the lower envelope function is plotted as a smooth dependency of time
on frequency, τ−(Ω), in Fig. 2(b).



Figure 2. (a) Solutions for implicit function F (..; ..) ≡ 0 as dependency of the time on frequency. (θi, ε) ∈ ZI

(1), (θi, ε) satisfies Eq. (2) (curve 2), (θi, ε) ∈ ZII (3). (b) Comparison of the numerical simulations with

experimental data. Dotted curves correspond to τi at which dθ/dτ < 0, solid curves correspond to τi at which

dθ/dτ > 0. Solid squares – experimental data. Smooth dependency τ−(Ω) is the lower envelope function for

solution τi(Ω) of implicit function F (τi, Ω; ..) ≡ 0 (case of inertia heating).

Conclusion

In this article we have studied the ignition of the single particle in dynamic temperature conditions.
Using passage time concept for supercritical and critical regimes of ignition we can conclude that

• Temperature limits for strong response of the temperature dynamics of the particle to the external
periodic perturbation are fixed by parameters of perturbation, λ and ε.

• The ignition delay time dependency on frequency, τi(Ω), is also controlled by the temperature of
ignition, θi, and may be both smooth and discontinued function.

• Making use of the analytical approximate solution of Eq. (1), smooth envelope functions, τ−(Ω)
and τ+(Ω), between which the particle temperature passes through the temperature of ignition, θi,
are estimated.
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