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Abstract

Analytical and numerical solutions of two basic problems of combustion theory are obtained, which are
the problems of dynamics and stability of curved stationary premixed flames.  A curved stationary shape
develops at an initially planar flame front in tubes of a moderate width as a result of the Darrieus-Landau
instability.   It is found that the curved shape amplifies the flame velocity by the factor 1.25-1.35 for 2D
flames and by  the factor 1.6-1.8 for 3D flames.  Stability analysis shows that curved stationary flames become
unstable in wide tubes with respect to the secondary Darrieus-Landau instability.  The critical tube width
for the secondary instability is calculated.   Because of the secondary instability extra cusps arise at a flame
front leading to additional increase of the flame velocity. On the basis of the obtained results the fractal
dimension of a flame is evaluated.

Introduction

Dynamics of curved premixed flames deserves much attention in combustion science since, as it was observed
experimentally [1-3], a flame almost never propagates as a planar front.  Quite often a curved shape of a flame
develops because of the hydrodynamic Darrieus-Landau (DL) instability [1].  According to the linear theory of the
DL instability [4] a planar flame in a gaseous fuel is unstable against all perturbations bending the flame front, if the
perturbation wavelength exceeds the cut-off wavelength λc  determined by thermal conduction and by the finite
thickness of a flame front. The instability growth rate depends on the expansion coefficient Θ of the flame defined as
the ratio of the fuel density to the density of the burnt matter, which takes the values Θ = −5 10  for most laboratory
flames.  The cut-off wavelength  is proportional to the flame thickness with a large numerical factor about 20 and
larger, while perturbations of a shorter wavelength λ λ< c  are suppressed by thermal conduction.

Outcome of the DL instability at the nonlinear stage has been a subject of long discussions starting from the
original papers by Darrieus and Landau.  First it was assumed that the DL instability leads to flame self-turbulization
[1].  Then it was proposed that the instability results in a smooth curved stationary shape of a flame front instead of
the self-turbulization [5]. The stationary shape may be described qualitatively as a large smooth hump directed
towards the fresh fuel and a cusp pointing to the burnt matter as shown in the first part of Fig. 1.  For a long time
the theory of the nonlinear stage of the DL instability was restricted to qualitative estimates [5, 6].  The rigorous
solutions were obtained only in the peculiar limit of a small expansion coefficient Θ − <<1 1  [7, 8], which is quite
far from the case of realistic laboratory flames. Therefore the theory of curved flames with small expansion coefficients
provided only qualitative, but not quantitative description of the nonlinear stage of the DL instability.  Besides, the
theory [7, 8] predicted that curved stationary flames are always linearly stable independent of the radius of curvature
of the flame, which obviously contradicts the basic physical understanding of flame dynamics and stability [6].

In the present paper we report recent results of the nonlinear theory of dynamics and stability of flames with
realistic expansion coefficients Θ = −5 10 . The theoretical results on the velocity amplification caused by the curved
shape of  stationary flames are in a very good agreement with the results of direct numerical simulations of flame
dynamics in tubes predicting the velocity increase by the factor 1.25-1.35 for two-dimensional (2D) flames and by
the factor 1.5-1.7 for three-dimensional (3D) flames. Stability analysis of curved 2D stationary flames with realistic
expansion coefficients shows that stationary flames do become unstable as soon as the size of the flame hump exceeds
the cut-off wavelength of the DL instability by a factor about 3.9-4.2.  On the basis of the obtained results we



evaluate the fractal dimension of a flame as 1.18-1.22 for 2D fractal flames and as 2.3-2.35 for 3D flames.  The
estimates of the fractal dimension agree well with experimental observations of self-accelerating spherical flames.    

Curved stationary flames

We have derived the nonlinear equation for curved stationary flames with realistic expansion coefficients [9], which
allows quantitative investigation of properties of curved flames. In the reference frame of a curved stationary flame
front z F U tw= ( ) −x  the nonlinear equation takes the form
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where U f  is the velocity of a planar flame, the operator Φ̂  is defined as
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and Fk  is the Fourier transform of F .  The nonlinear equation (1) is valid for any kind of fuel (both viscous and
inviscid) with any temperature dependence of the transport coefficients and any Lewis number for which the thermal-
diffusion instability of a flame does not happen. The transport properties of the fuel influence only the expression for
the cut-off wavelength λc , while the nonlinear terms are not affected by the fuel properties and the mathematical
structure of Eq. (1) remains the same independent of a particular premixed fuel.

The stationary nonlinear equation predicts quite well the velocity amplification of curved stationary flames both
for the cases of 2D flames [9] and 3D flames in cylindrical tubes [10].  Particularly, it follows from Eq. (1) that a
planar flame front in a tube with ideal walls acquires a smooth curved shape with the velocity of the curved flame Uw

exceeding the respective planar flame velocity U f , if the tube width is larger than some critical value R Rc> .  In

the configuration of 2D curved flames the critical tube width is Rc c= λ / 2  because of the ideal boundary
conditions at the tube walls that can be interpreted also as symmetry axes. The velocity amplification for 2D
curved stationary flames depends on the tube width R as [9]
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where M R Rc= +[ ]Int / /2 1 2  and the factor β2D  characterizing the maximal velocity increase
max /U Uw f D= +1 2β  is a function of the expansion coefficient
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The analytical formula for the velocity amplification of curved stationary flames Eqs. (3), (4) is in a very good
agreement with  results of direct numerical simulations of flame dynamics in tubes of moderate width with
ideally slip and adiabatic walls [11] performed on the basis of the complete set of hydrodynamic equations
including thermal conduction, viscosity, fuel diffusion and chemical kinetics.

Dynamics of 3D curved stationary axisymmetric flames in cylindrical tubes has been investigated as an
eigenvalue problem Eq. (1) in [10] and by use of direct numerical simulations of the complete set of
hydrodynamic equations in [12].  Dynamics of 3D curved flames involves many specific features such as
existence of two principally different solutions corresponding to convex and concave flames, the nonlinear DL
instability in narrow tubes with R Rc< , etc.  Still basic properties of the principal solution for the 3D
axisymmetric convex flame are similar to the properties of 2D curved stationary flames.  At the same time the
characteristic velocity amplification β3 1D w fU U= −/  for the 3D flames is about twice larger than the

respective velocity amplification for 2D flames and may be described well by the formula
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Thus, development of a curved stationary shape at a flame front with a realistic expansion coefficient Θ = −5 10
results in amplification of the flame velocity by the factor U Uw f/ . .= −1 25 1 35 in 2D configurations and by the

factor U Uw f/ . .= −1 5 1 7  in 3D configurations.

Stability of curved stationary flames



In order to investigate stability of curved stationary flames a time dependent version of the nonlinear equation (1) has
been derived and then linearized around the stationary solutions Fs x( ) with respect to small perturbations
˜ , ˜ expF t F tx x( ) = ( ) ( )σ .  Solution of the eigenvalue stability problem for 2D curved flames in tubes with ideally slip

and adiabatic walls on the basis of the linearized equation shows that curved stationary flames do become unstable as
soon as the tube width exceeds some critical value Rw .  Below we will call Rw  the second critical

Fig. 1. The secondary DL instability at a flame front with Θ =8  in a tube of width R Rc= 4  at different time 

instants after the beginning of calculations.  The flame in the figures propagates downwards.

tube width in order to distinguish it from the first critical tube width Rc .  Though a priori the growth rate σ  of
the obtained secondary DL instability might be an arbitrary complex value, numerical solution of the
eigenvalue stability problem shows that σ  is real for all problem parameters with Imσ = 0.  Therefore, the
condition Reσ = 0 at the stability limits implies also σ = 0, so that the stability limits may be found on the
basis of the linearized equation for curved stationary flames (1)
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with the ratio R Rc w/  playing the role of an eigenvalue of Eq. (6).  Numerical solution of the linearized
equation gives the stability limits R Rw c/ .≈ 4 2 for curved stationary flames with realistic expansion
coefficients Θ = −5 10.  The ratio of the second and first critical tube width somewhat increases with decrease
of the expansion coefficient: e.g. R Rw c/ .= 4 35 for Θ = 3.  Taking into account the results [8] for flames with
small expansion coefficients Θ − <<1 1 one may conclude that the second critical tube width becomes infinite
R Rw c/ →∞  as the expansion coefficient goes to unity Θ→1.  Direct numerical simulations of 2D curved
flames in wide tubes with ideally slip and adiabatical walls on the basis of the complete set of hydrodynamical
equations confirm the theoretical predictions.  Particularly, according to the numerical simulations the second
critical tube width is R Rw c/ . ; . ; .= 3 6 3 7 3 95   for flames with the expansion coefficients Θ =10 8 6; ;  , which is
only slightly smaller than the theoretical predictions.

In wider tubes R Rw>  the secondary DL instability develops at a curved stationary flame front.  As
illustrated in Fig. 1 development of the secondary instability close to the stability limits leads to an extra cusp
arising at the initially smooth hump of the stationary flame.  The second cusp may become even deeper than
the primary one, though quite often the resulting new regime of flame propagation is not stationary with the
depth of the cusps pulsating in time.  Another important point is that the new shape of the flame front results in
considerable increase of the flame velocity in comparison with the maximal velocity of curved stationary
flames.  For example, it is observed that the flame with the expansion coefficient Θ = 8 propagates in a tube of
width R Rw c= 4  with velocity U Uw f=1 82.  exceeding noticeably the respective maximal velocity of curved

stationary flames U Uw f=1 33. . Taking into account physical similarity between the primary and secondary DL

instabilities one should expect that the secondary instability leads to amplification of the flame velocity by the

factor U Uw f D/ = +( )1 2
2β  for the configuration of 2D flames in ideally slip and adiabatic tubes of widths



R R R Rw w c< < 2 / .  This estimate is in agreement with the results of direct numerical simulations of flames in
wide tubes.

Discussion: fractal flame structure

For wider tubes R Rw>>  further development of the DL instability is expected leading to a fractal flame structure
similar to that observed in the experiments [13].  A fractal structure of a flame front implies cascades of humps and
cusps of different sizes imposed one on another.  Let us assume that every step of the cascade increases the size of the
humps and the flame velocity by the values b  and 1+ β , respectively, which is supported by the observed velocity
amplification in the secondary DL instability.  The largest length scale of the fractal flame structure is limited by the
tube width R.  Then the velocity of the fractal flame with a large number of cascades N R R bc= ( ) >>ln / / ln 1

depends on the tube width as [14] 
U U U R Rfractal f

N
f c
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where d b= +( )ln / ln1 β  is the excess of the fractal flame dimension over the embedding dimension.  Evaluating the
factor β  for 2D fractal flames with the help of Eq. (4) and the factor b  as b R RD w d2 = /  we find the estimate for the
fractal excess d D2  of 2D flames with realistic expansion coefficients d D2 = 0.18 - 0.22 , so that the fractal flame
dimension is 1.18-1.22. The fractal dimension depends on the expansion coefficient of the flame increasing with
increase of the fuel expansion.  In the case of 3D flames the DL instability is stronger at the nonlinear stage and a
larger fractal excess over the embedding dimension is expected.  The velocity amplification for 3D flames on every
step of the fractal structure is about twice larger than in the 2D case, which determines the factor β3D  Eq. (5). There
are no results on stability limits of 3D curved stationary flames yet, therefore the only estimate for the factor b D3

available so far comes from the theory of 2D flames.  Adopting the estimate b D3 4≈  in the 3D case we obtain the
evaluation for the fractal excess of a 3D flame d D3 = 0.3 - 0.35  with the respective fractal dimension 2.3-2.35 for
flames with realistic expansion coefficients.  Though the last estimates are rather approximate, they agree well with
the experimentally measured values 2.33 of the fractal dimension for spherically expanding laboratory flames [13].
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