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Abstract

The dynamic steady-states of  reaction-diffusion systems, constructed as models of reacting packed beds
capable of self-ignition, are described by employing the direct simulation of PDE-based models, and, when
possible, characterised via a parameter continuation approach. This combined approach permits to analyse and
accurately describe a period-doubling cascade, and to consider the problem of the determination of different
routes to chaos. Multiplicity of dynamic steady-states is observed, with coexistence of torus doubling sequences
and of period-adding bifurcation sequences.

Introduction

The problem of spontaneous ignition in packed beds has attracted the attention of the scientific community for many
decades. Rather recently, several papers have been devoted to the problem of spontaneous combustion of coal
stockpiles [1,2]. Our group has studied and characterised some dynamical models of the self-ignition of coal stockpiles
[3-5]. It was observed that, when natural convection is neglected, the system may show complex oscillatory patterns
with possible onset of chaos. In [5] we estimated the power spectra, the Lyapunov Characteristic Exponents (LCE) and
the dimensions of the attractors. In [3] a first bifurcation diagram was determined by means of parameter continuation.
Later on, mixed-mode oscillations were detected for a model incorporating natural convection within the stockpile [6],
and for a reaction-diffusion model of a self-igniting packed bed, with no convection, and in association with
multiplicity of dynamic steady states and chaos [7]. The so-called complex or mixed-mode oscillations, a peculiar kind
of dynamical asymptotic response, have been observed in connection with various chemical processes, particularly in
biochemical systems [8,9], electrochemical models [10], non-isothermal catalytic systems [11,12]. A mechanism of
bifurcation originating these oscillations has not been identified yet. Rather recently, Abashar and Elnashaie [13], for a
non-isothermal fluidised bed catalytic reactor, and Milik et al. [14] for an autocatalytic system, also detected
mixed-mode oscillations and explained the period-adding mechanism by analogy with some appropriate one-
dimensional maps.

The analysis of bifurcation and onset of chaos for distributed parameter systems is a nontrivial issue. In many cases
the problem, governed by a system of partial differential equations, may be usefully recast in terms of a large ODE
problem. However, only if the number is not too large an automatic bifurcation analysis can be conducted and
significant theoretical results can be obtained. In the others, the analysis can still be done with brute force, that is to use
numerical simulations as if they were experiments. Some of the mentioned reduction techniques and examples of
application of them, and of numerical simulations when the systems are still too complex, are described and discussed
in the present communication, along with some interesting results.

Non-Isothermal Reaction-Diffusion Models

The self-ignition of a packed bed can be described by means of a distributed-parameter model. Such systems can get
very complex. For example, coal stockpiles may self-ignite if reaction of coal with oxygen in the air generates heat
which is not efficiently removed towards the external ambient. The heat production determines temperature gradients
across the pile, so that a driving force for the onset of natural convection exists. The natural convection has a significant
effect on the ignition itself, since it pushes air into the pile thus feeding reactant to the system, but, simultaneously, it
cools down  the coal pile with air at ambient temperature. The dynamic behaviour of a coal pile modelled as a
two-dimensional system shows an interesting and complex dynamic evolution [6]. A rich dynamic behavior is however
exibited by a simpler reaction-diffusion model where the gaseous reactant diffuses through the reacting medium along
the one space coordinate considered. Consumption of the solid reactant is neglected. A first-order one-step exothermic
chemical reaction takes place. The reaction rate depends on the temperature through the classic Arrhenius exponential.



Gas and solid temperature are equal, i.e. only one energy balance equation is written, considering heat conduction and a
source term due to the reaction. The model equations, made non dimensional, are:
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set of initial conditions: )()0,( 0 xTxT = , )()0,( 0 xYxY = . Here Y is the gas reactant mass fraction, T is the temperature, t

is the time coordinate, x is the space coordinate, Le is the ratio between mass and heat diffusivities, β  is a

nondimensional heat of reaction, Φ  is the Thiele modulus, and γ is a nondimensional activation energy. The model
equations were reduced to a set of ODE through orthogonal collocation.All the reported results were computed with 12
collocation points.

Results and discussion

In order to characterise in more  detail  the  global behaviour of  the model  describing such a phenomenon, an attempt
has been made to trace out some solution diagrams, via continuation, as the parameter γ (the non dimensional activation
energy) is varied. The diagram in Fig. 1 is obtained by setting the other parameters to the following values: Le=0.233,

2Φ =70000, β =4.287. It is possible to observe four bifurcation points on the main continuation branch: two static

bifurcations, of the saddle-node kind, for γ=13.3047 and γ=13.3056, and two dynamic (Hopf) bifurcations for
γ=13.3783 and γ=12.033. An equilibrium point for γ<12.033 corresponds to a fast reaction regime; an equilibrium point
for γ>13.3783 corresponds to a slow reaction regime. The distribution of the state variables along the space coordinate
are reported for the two cases in Fig. 2. Back to Fig. 1, from left to right, the first bifurcation encountered (γ=12.033) is
a supercritical Hopf bifurcation. The system evolves with a period-1 limit cycle of increasing size as γ is increased.

Figure 1 - Solution diagram for the system as determined via
continuation with γ as bifurcation parameter. Lines represent static
steady states (solid=stable, dashed=unstabe), circles represent
periodic solutions (filled=stable, empty=unstable). Diamonds
represent stable periodic solutions computed via simulation

Figure 2 - Temperature (T) and concentration (Y)
profiles along the x coordinate, for the two typical
equilibrium solutions, on each of the two sides of the
main stable solution branch: a) fast reaction regime,
γ=10; b) slow reaction regime, γ=13.6.



Figure 3 reports a phase-plot and a time series of a typical limit cycle in this range of the bifurcation parameter. The
phase-plot was obtained by arbitrarily selecting two variables, namely the mass fraction and the temperature at a
selected location of the spatial domain. The time series represents the time evolution of one arbitrary selected scalar
variable, namely the temperature at the same selected location. It is seen that the space profiles of mass fraction and
temperature oscillate in time around those reported in Fig. 2a. (the fast reaction regime). As γ is increased further, a
period-doubling cascade is observed, leading to chaos for γ=12.407 approximately. Chaos generated through the
Feigenbaum mechanism exists for a very narrow range of the bifurcation parameter. In fact, a second, reverse period-
doubling cascade is found as γ is increased. This chaos window includes many periodic windows, where period-3,
period-5 and period-12 cycles were identified.

Diamond symbols reported in Fig.1 represent the periodic solutions obtained via simulations in a field that could not
be characterised via continuation. With the aid of simulations, it was possible to conclude that, in this specific case, a
cyclic fold bifurcation point is found within a very small interval (less than 10-7) from the Hopf bifurcation value. The
rightmost diamond point in Fig. 1 corresponds to the ignition limit for the system, that is when the reactant
concentration builds up to a point where the heat generated by the (slow) reaction overcomes the heat losses to the
boundaries.

For γ varying from 13.3783 to 12.65 the limit cycle undergoes several bifurcations, detected via simulation, among
which a series of period-adding bifurcations that produce complex stable mixed-mode oscillations. These are not the
only stable attractors seen for the system in this range of the parameter. For the same values of  γ, quasi periodic (tori)
and aperiodic attractors exist along with periodic solutions. The basins of attraction have extremely complex shapes,
and a large number of simulations are needed to identify such multistability.

If one looks at the numerical results in terms of phase plots, the behaviour of all dynamic attractors seems to be
driven by the contrasting tendencies of the system, attracted both to the slow reaction regime (large cycles, long
periods, steep gradients) and to the fast reaction regime (small cycles, short periods, moderate gradients). Particularly,
chaotic orbits often consist of several large loops followed by few smaller loops  This feature is found in other chaotic
systems (see for example [15]). Various possible mechanisms could justify the observed dynamic steady states. By
looking at the structure of the underlying mathematical model of the system under study, it is seen that the two partial
differential equations are only coupled through the nonlinear source term. This means that, in the regions where the
source term vanishes or is very small, the equations are locally almost uncoupled. Note that such an occurrence is quite
common in combustion, where activation energies are large and reaction zones are small compared to the spatial
domain. The system can be at times separated into subsystems which are very loosely coupled only through heat
conduction, and this makes it possible, for example, to think of the periodic attractor generated via a period-adding
bifurcation as a result of the synchronisation of two dynamic steady-states of two (weakly) coupled oscillators.
Analogously, a torus can be thought as generated by the composition of two (almost) independent dynamic steady-
states of two (almost) uncoupled oscillators.
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Figure 3 - ’Small’ Period-1 limit cycle after the supercritical Hopf bifurcation, γ=12.3
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