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Effects of turbulent combustion induced by explosion of a 875-g cylindrical charge of TNT in a 16.6 m3

chamber filled with air, are investigated.  The detonation wave in the charge transforms the solid explosive

(    C H N O7 5 3 6) to gaseous products, rich (~20% each) in carbon dust and carbon monoxide.  The detonation pressure

(~210 kb) thereby engendered causes the products to expand rapidly, driving a blast wave into the surrounding air.

The interface between the products and air, being essentially unstable as a consequence of the strong acceleration

induced by the blast wave, evolves into a turbulent mixing layer—a process enhanced by shock reflections from the

walls (Fig. 1).  Under such circumstances rapid combustion takes place where the expanded detonation products

play the role of fuel.  Its dynamic effect is manifested by the experimental measurement of a 3-bar pressure increase

in the chamber, in contrast to a 0.8-bar increase for a TNT explosion in nitrogen (Fig. 2).  Such pressure

enhancements are consistent with a “Heat of Combustion” = 3575 Cal/g versus a “Heat of Detonation” = 1093

Cal/g, as measured in a bomb calorimeter by Ornellas [1].

The experiments were modeled as turbulent combustion in an unmixed system at large Reynolds, Peclet

and Damköhler numbers.[2,3,4]  The three-dimensional CFD solution was obtained by a high-order Godunov

scheme[5] using an Adaptive Mesh Refinement—AMR[6] to trace the turbulent mixing on the computational grid in

as much detail as possible.  The calculated pressure histories were in good agreement with the measurements (vid.

Fig. 2)—thereby demonstrating that model faithfully reflects the controlling mechanism of exothermic energy

deposition: turbulent mixing.

The evolution of the calculated mass fraction of fuel consumed by combustion is presented in Fig. 3.  It

starts with a finite burning rate (associated with the finite area of the fuel surface) followed by an exponential decay.

Fuel consumption is well approximated by the “Life Function”[7] (also known as a “Vibe Function”[8]):
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where     ζ λ(t) [ ( / ) ] /( )= − − ++1 1 11t T nn .  Regression analysis was used to establish the fitting parameters that gave a

good approximation to the calculated burning curve {    λ = = =46 49 300; ;n T  ms}.



The corresponding burning rate is:
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which represents the “Kinetic Equation” for the turbulent combustion process[9].

The results reveal the dynamics of a combustion process in which the exothermic energy deposition is

controlled by fluid-mechanic transport (convective mixing) in a highly-turbulent field[10], in contrast to the

conventional reaction-diffusion mechanism of laminar flames as proposed by Zel’dovich & Frank-Kamenetzkii[11] in

1938.
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(a) t = 1 ms

(c) t = 10 ms

(b) t = 3 ms

(d) t = 20 ms

Figure 1. AMR simulation of the explosion of a 875-g cylindrical TNT charge in a 16.6-m3 chamber filled with air at
atmospheric pressure.  TNT detonation products (shown in yellow), mix with air (depicted as blue) thereby forming
combustion products (represented as red).  Exothermic cells are marked by white dots. Vorticity contours are green
(negative) and turquoise (positive), while dilatation contours are black.
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Figure 2. Over-pressure history from the 3D-AMR simulation (run 1) of a TNT explosion and combustion in air
compared with TNT experiments in air and nitrogen atmospheres.
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Figure 3.  Mass-fraction burned, µ , and burning rate, ′µ , from 3D AMR simulations of turbulent combustion of
TNT products in air ( ∆ =  mesh size, δ =  initial charge perturbation,     λ &  n  are parameters of the Life Function   x ).


