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1.  Introduction

In this paper, we address the question of the amplification of long wavelength acoustic waves reflected from fast
deflagration waves where the entropy change across such fronts is significant, but where the structure of the
deflagration is not resolved. Effectively the premixed combustion front with its associated entropy change is
treated as a discontinuity in the flow with standard Rankine-Hugoniot jump conditions applied across it. If such
a combustion front is (by some means) travelling fast enough to produce significant compressibility, there is
then the possibility of the combustion front sending its own compression waves (i.e. strong acoustic
disturbances) through the combustible mixture. This work considers acoustic waves interacting with a fast (but
still subsonic) combustion front using the significant work of Ni and Goel (1995) which has pioneered this type
of analysis. The combustion front, though one-dimensional, could in fact be turbulent in its structure, and the
unsteady pressure disturbances would then be characterised by a long length scale.

With entropy no longer approximately conserved across the combustion front due to the high speed, the
perturbation in pressure just before and after is now  not the same, but one can obtain a connection between the
amplitude of acoustic disturbances before and behind the front and which has (as a parameter) the dependence
of burning rate on pressure. Thus the whole theory can be applied to fast turbulent as well as conventional
laminar structures. For fast turbulent flames it is recognised that the mean mass burning rate may itself vary due
to small but significant baroclinic terms. However in this simple model this effect is not included - the theory
depends on a given input of the sensitivity of mass burning  rate with pressure rise. This is termed χ and for a
laminar premixed flame with an overall reaction rate characterised by an activation energy ′Ea  and flame

temperature ′Tb , it will have the approximate form
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where M01  is the Mach number of the propagation of the flame into the cold upstream flow. Essentially this

arises from the small heating effect due to the pressure work term, which then slightly increases the flame
temperature. The mass burning rate is very sensitive to flame temperature rises, due to the activation energy in
the exponential of the Arrhenius reaction rate term of the energy equation. In general for laminar low speed
flames, the value of χ is too small, but as pointed out by Ni and Goel (1995), it can be significant for a
combustion front which may no longer be laminar, but is driven possibly by turbulence. This work explores the
effects on compressibility as one allows χ to increase.
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Fig. 1. Schematic of compressible combustion front within a tube which can
undergo acoustic interactions.



In an earlier paper (McIntosh 1999) it has been shown, that by building on the conceptual advance of Ni and
Goel (1995), one can construct frequency conditions which must be obeyed for acoustic oscillations interacting
with such a compressible reaction front. These frequency conditions are typically of the form
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This is the form of the condition for a tube which is open at both ends. In this equation ω is complex frequency,
�1 is the distance from one end of the tube to the flame, with �2 being the distance on the hot side of the flame
(see Fig. 1). Ts2 is the ratio of the temperature of the hot side of the flame to the cold and M01, M02 are the Mach
numbers of the flow in the upstream and downstream sides respectively. The condition for the tube closed at the
cold end is
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and that for a tube closed at the hot end is
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If one knows how the mass burning rate of the front changes with pressure, then it is possible to predict the
resonance or otherwise of fast compressible combustion waves within predefined geometries.

2.  Results and discussion

Single waves from one side only.

Some initial results are indicated in the following figures. First of all we consider two simple cases:

(1) The transmission and reflection of an acoustic wave approaching from the hot side which has a length l2
(where it should be noted that �� �2 2 2≡ Ts and Ts2 denotes the ratio of the hot and cold zone temperatures.

Fig. 2 shows the plot of the growth rate (plotted as ωr
��2 ) of the lowest modes, which are  ω πi

��2 2=  and

ω πi
��2 = . This plot is for a given value of χ and �M M M≡ 02 01 . The equation satisfied is the simpler

relationship
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Fig. 2. Regions of resonance and damping for an acoustic signal approaching the
fast combustion front from the hot side.
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It is evident that only for χ<1 can one avoid resonance in this case.

(2) The transmission and reflection of an acoustic wave approaching from the cold side which has a length l1 .
Fig. 3 shows a similar plot of the growth rate (but this time plotted as ωrl1) again of the lowest modes, for the

same value of χ and �M M M≡ 02 01 . The simpler relationship is now
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Resonance is now achieved when � �M M< < +χ 1  for the modeω πi�1 2=  and when χ > +1 �M  for the

mode ω πi�1 =  .

Multiple acoustic waves

If one now considers the solution to the problem of a front which is steadily progressing down a finite length
tube, then one always obtains resonance, but with a distinct series of maxima in the growth rate as the
combustion front progresses down the tube. Typical results are shown in Figures 4 and 5 for the case of an open
tube (equation (2)). As the front reaches the extreme of the tube, the frequency increases (Fig. 4), and the
amplitude of the growth rate cycles much more rapidly (Fig. 5) as the end is reached. It is also of interest to note
that the peak growth rate increases as the flame comes to the end of the traverse. Both the plots are for a total

tube length l1+ l2 = 20, mass burning rate sensitivity to pressure χ = 0.5, M02/M01 = 1.2. In these figures, the
combustion front should be considered as travelling from right to left.
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Fig. 3. Regions of resonance and damping for an acoustic signal approaching the
fast combustion front from the cold side.



These results are relevant to the propagation of flames in tubes where it has often been noted that there can be
severe oscillations in the final stages of the propagation. Although this theory does not predict the propagation
velocity (because the structure of the front has not been assigned), one can estimate the resonant behaviour of
the wave given an estimate of the initial Mach Number M01 and the sensitivity χ of mass flux to pressure.
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Fig. 4. Resonant frequency for a fast flame in a tube as a function
of position.
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Fig. 5. Growth rate for resonance of a fast flame in a tube as a function of
position.


