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Introduction. The counter
ow mixing layer has been widely used to investigate the interactions

between 
ow �eld and chemistry in nonpremixed combustion. The steady reacting solutions in such a

con�guration can be characterized by the peak temperature as a function of the strain rate, giving an

S-shape curve whose upper and lower turning points represent conditions for extinction and ignition,

respectively [1]. A number of analytical and numerical studies have been performed on the ignition

of steady hydrogen-oxygen systems in recent years, with both reduced and detailed chemistry [2]{[5].

Theoretical analyses in the high-temperature regime [3, 5] have shown that, for temperatures above

the crossover value (the temperature at which the rate of the main radical-branching step, H + O2 !
OH + O, equals that of the main radical-recombination step, H + O2 + M ! HO2 + M), ignition

emerges as a bifurcation from the chemically frozen branch when the Damk�ohler number, �, based on

the time scales of the strain rate and the relevant branching reaction, is increased to a critical value,

�c, of order unity. It was also found that, for su�ciently high temperatures, the bifurcation becomes

supercritical, a behavior also observed in numerical calculations [2, 4].

In contrast, relatively few studies have dealt with unsteady ignition histories in strained mixing layers

[9, 10]. These analyses employ a simple Arrhenius reaction rate, and thus ignition is described by thermal

runaway. However, ignition in the high-temperature hydrogen-air mixing layer for � > �c exhibits a

more complex behavior. After a short initial period controlled by the initiation reactions, the solution

undergoes a chain-branching explosion in which the radical pool increases exponentially with time. The

ignition stage is completed as the radicals reach mole fractions of order unity, for which the branching

reactions attain partial equilibrium. Further development of the solution involves radical recombination

and signi�cant heat release, eventually leading to the establishment of a di�usion 
ame.

The in
uence of the 
ow �eld on the spontaneous ignition history of a turbulent H2-O2 mixing layer

was recently investigated through a direct simulation with detailed chemistry [8]. It was found that

the variation in ignition delay time is very small for a wide range of turbulence intensities, including

a case where the eddy turnover time is approximately one third of the ignition delay. This large-

scale numerical study, however, is limited to only a few 
ow conditions, and thus lacks a complete

parametric description of the issue. Therefore, in this paper we consider the unsteady evolution of the

high-temperature hydrogen-air laminar counter
ow mixing layer under a wide range of the constant

strain rates, a. The initial conditions are chosen as those of the nonreacting mixing layer, by suppressing

all the reactions. The analysis provides the ignition delay as a function of the strain rate, thereby

allowing for a more concrete description of the ignition response under a wide range of 
ow conditions.

Reduced Kinetic Mechanism and Formulation We consider the case where the temper-

ature is su�ciently above the crossover value. The three-body recombination reaction is then negligible,

and the initiation reaction H2 + O2

1! OH + OH and radical-branching reactions H + O2

2! OH + O,

H2 + O
3! OH + H, H2 + OH

4! H2O + H su�ce to describe the branched-chain process. This scheme

can be further simpli�ed by assuming that the OH radical maintains steady state everywhere [6], reducing

the four-step mechanism to the three overall reactions 3H2 + O2

I! 2H + 2H2O, H2+O2

II! O+H2O and

2H2 +O
III! 2H+H2O with global rates !1, !2, and !3 respectively. Updated values of the reaction-rate

constants corresponding to steps 1{3 are available [7].

In the radical growth stage, reactant consumption and heat release can be neglected in the �rst

approximation, so that chain-branching is described by integrating the radical conservation equations

with the chemical terms evaluated with the frozen reactant concentration and frozen temperature pro-

�les. We further adopt a Fickian description for the di�usion velocities and assume that the density

�, kinematic viscosity, �, thermal di�usivity, �, and di�usion coe�cients, Di, all have uniform values

across the mixing layer. The conservation equations for the radicals then simplify to

@yH

@�
� 1

�

�
�
@yH

@�
+

1

SH

@2yH

@�2

�
= �I(�) + 2
�III(�)yO (1)



and
@yO

@�
� 1

�

�
�
@yO

@�
+

1

SO

@2yO

@�2

�
= �II(�)yH � 
�III(�)yO (2)

with initial conditions yO(0; �) = yH(0; �) = 0 and boundary conditions yO(�;�1) = yH(�;�1) = 0,

where � = (a=�)1=2y and � = �k21YO21
t=WO2

are appropriate dimensionless forms of the transverse

coordinate and evolution time, while Si = �=Di denotes the Schmidt number of species i. In the for-

mulation, Wi and yi denote the molecular weight and mass fraction of species i, �j = Ej=(R
oT1) is

the nondimensional activation energy of reaction j evaluated at the oxidizer-side temperature. The sub-

scripts1 and �1 refer to freestream properties at the oxidizer and fuel boundaries, respectively, and the

subscript f denotes chemically-frozen pro�les. The constant Damk�ohler number � = �k21YO21=(aWO2
)

is based on the characteristic branching time of reaction II, the functions �I = exp[�1�f=(1+�f )]yO2fyH2f ,

�II = exp[�2�f=(1 + �f )]yO2f , and �III = exp[�3�f=(1 + �f )]yH2f , all quantities of order unity, represent

reduced Damk�oler numbers evaluated across the mixing layer with the local frozen values of the re-

actant mass fractions and temperature. The parameter 
 = k31WO2
YH2�1=k21WH2

YO21 is the ratio

of the characteristic branching time of reaction II to that of reaction III, a quantity that takes rela-

tively large values for undilute fuel feed. The frozen reactant mass fractions and frozen temperature

pro�les are scaled according to yO2f = YO2f=YO21 = 1 � 0:5 erfc[(SO2
=2)1=2�], yH2f = YH2f=YH2�1 =

0:5 erfc[(SH2
=2)1=2�] and �f = (Tf � T1)=T1 = 0:5 ��1erfc[(Pr=2)1=2�], where Pr = �=� is the Pradtl

number and ��1 = (T�1 � T1)=T1. The radical mass fractions yH = k21WH2
YH=2k11WHYH2�1 and

yO = k21WH2
YO=2k11WOYH2�1 are scaled with the ratio of the branching time to the initiation time

" = k11=k21, a very small quantity that takes, for instance, the values 1:7 � 10�7 and 4:3 � 10�5 at

T1 = 1200 K and T1 = 2000 K, respectively.

The chemistry description utilized here assumes small values for the radical mass fractions, thereby

neglecting the backward rates of reactions 2{4. Therefore, Eqs. 1 and 2 cease to be valid as the radical

mass fractions reach values of order unity, leading through a short adjustment period not studied here

to a solution with partial equilibrium of the shu�e reactions 2{4. Since this adjustment period is much

shorter than the autocatalytic growth stage described here, for practical purposes one may assume that

partial equilibrium is achieved as the solution to Eqs. 1 and 2 yield radical mass fractions of order unity,

i.e., values of the variables yH and yO of order "�1 � 1.

Analytical Solution. The exact solution to the linear Eqs. 1 and 2 with the previously stated

initial and boundary conditions can be found in the form
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where �n and (�H;�O)n denote the discrete set of eigenvalues and corresponding eigenfunctions of the

associated problem
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with boundary conditions �H(�1) = �O(�1) = 0. In the notation, the prime denotes di�erentiation

with respect to the coordinate �. The constants �n must be chosen so that

�
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; (5)

an equation that can be solved for �n by using the orthogonality condition between the eigenfunctions

of Eq. 4 and those of its corresponding adjoint problem. The eigenfunctions are normalized so that their

maximum value is one.

If the Damk�ohler number is smaller than the critical value �c mentioned above, then all resulting �n
are negative, and the solution develops from yH = yO = 0 to a �nal state with peak values of the functions

yH and yO of order unity corresponding to a quasi-frozen state. The value of �c can be easily determined

as the smallest positive value of � for which a nontrivial solution to Eq. 4 with �n = 0 exists [5]. If

� > �c, then at least one positive value of �n exists, and the solution undergoes a chain-branching

explosion. The associated radical pro�les given in Eq. 3 take for �1� � 1 the simpli�ed form
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where the subscript 1 refers to the largest positive eigenvalue and its corresponding eigenfunction, and

the coe�cient �1 is computed from the approximate equation
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Since ignition occurs when the scaled radical mass fractions yH and yO reach peak values of order "�1,

Eq. 6 yields

�ig = ln("�1)=�1 (8)

as an approximate expression for the ignition time. The maximum value of yH obtained from the one-

term approximation given in Eq. 6 with �1 calculated from Eq. 7 is compared with results of numerical

integrations of Eqs. 1 and 2 in �gure 1, indicating that Eq. 8 provides an accurate prediction for �ig .

The Limit of Large Damk�ohler Numbers. When the strain time is larger than the

branching time (� � 1), the chemical reaction is seen to be con�ned to a thin layer of thickness

��1=4 where radical transport by convection is inconsequential. The resulting ignition time becomes

independent of a in the �rst approximation. The method employed to analyse this asymptotic limit of

large Damk�ohler numbers, as well as the main results, are summarized below.

The thin chemical-reaction layer is found to be located at � = ��, with �� determined as the location

where the e�ective Damk�ohler number

�(�) =
�
�III(�) +

p

2�III(�)2 + 8
�III(�)�III(�)

2

reaches its peak value �1 = �(��), which turns out to be the �rst coe�cient in the asymptotic expansion

�n = �1 + ��1=2�2 + � � � for all �n. To determine �2 one needs to investigate the leading-order form

of the radical pro�les �H(�) and �O(�) = �1�H(�)=[2
�III(�
�)] by introducing the stretched coordinate

� = [�2�S�00(��)]1=4(� � ��), where S = [2�1 + 
�III(�
�)]=f[�1 + 
�III(�

�)]=SH +�1=SOg is an e�ective

Schmidt number. The problem reduces to the solution of the parabolic cylinder equation [11]

�00
H
� (�2=4 + �)�H = 0; �H(�1) = 0;

which posseses solutions �H = exp(��2=4); �exp(��2=4); � � � for a discrete set of eigenvalues � =

�1=2;�3=2; � � �, thereby determining the value of �2 through the de�nition � = f�S=[2�00(��)]g1=2�2.
In the �rst approximation, the asymptotic analysis gives the radical pro�les
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where �1(
; ��1) and �2(
; ��1) can be easily computed as indicated above. The analysis also yields
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as an approximate expression for the ignition time, which becomes increasingly accurate for increasing

values of � as can be seen from the comparisons provided in Figures 1 and 2. Figure 2 shows compar-

isons of the ignition times results given by Eqs. 10 and 8 with numerical calculations of the complete

conservation equations with detailed transport and chemistry description. It is seen that these results

agree well for large Damk�ohler numbers, where the ignition delay is insensitive to the strain rate. It is

also shown that the ignition delay predicted by the asymptotic solution, Eq. 10, becomes inaccurate as

� approaches �c, a limit which requires further analysis.
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Figure 1: The maximum value of yH corresponding to undilute fuel feed (
 = 200) with �1 = 0 as

obtained from the numerical integrations of Eq. 1 and 2 (solid line), from the analytical solution retaining

one eigenfunction given in Eq. 6 (dashed line), and from the asymptotic solution given in Eq. 9 with

one term (dotted line) and two terms (dashed-dotted line) in the eigenvalue expansion. The numerical

values of the parameters in Eq. 6 are �1 = 0:214 and �1 = 1:4988 for � = 10, and �1 = 0:2101 and

�1 = 1:7520 for � = 100, while those appearing in Eq. 9 are �1 = 1:8457, �2 = �0:8897, �I(��) = 0:1434

and �III(�
�) = 0:1462, with �� = 2:415.
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Figure 2: Ignition delay times as obtained from numerical integrations of the complete conservation

equations with detailed transport and chemistry description (solid line), from the analytical solution

given in Eq. 8 (dashed line), and from the asymptotic solution given in Eq. 10 (long-dashed line).


